This online individualized risk calculator can be of clinical usefulness for the transdiagnostic prediction of psychosis in secondary mental health care. The risk calculator can help to identify those patients at risk of developing psychosis who require an ARMS assessment and specialized care. The use of this calculator may eventually facilitate the implementation of an individualized provision of preventive focused interventions and improve outcomes of first episode psychosis.
Schizophrenia has historically been considered to be a deteriorating disease, a view reinforced by recent MRI findings of progressive brain tissue loss over the early years of illness. On the other hand, the notion that recovery from schizophrenia is possible is increasingly embraced by consumer and family groups. This review critically examines the evidence from longitudinal studies of (1) clinical outcomes, (2) MRI brain volumes, and (3) cognitive functioning. First, the evidence shows that although approximately 25% of people with schizophrenia have a poor long-term outcome, few of these show the incremental loss of function that is characteristic of neurodegenerative illnesses. Second, MRI studies demonstrate subtle developmental abnormalities at first onset of psychosis and then further decreases in brain tissue volumes; however, these latter decreases are explicable by the effects of antipsychotic medication, substance abuse, and other secondary factors. Third, while patients do show cognitive deficits compared with controls, cognitive functioning does not appear to deteriorate over time. The majority of people with schizophrenia have the potential to achieve long-term remission and functional recovery. The fact that some experience deterioration in functioning over time may reflect poor access, or adherence, to treatment, the effects of concurrent conditions, and social and financial impoverishment. Mental health professionals need to join with patients and their families in understanding that schizophrenia is not a malignant disease that inevitably deteriorates over time but rather one from which most people can achieve a substantial degree of recovery.
Acid phosphatases (Acp) of intracellular pathogens have recently been implicated as virulence factors that enhance intracellular survival through suppression of the respiratory burst. We describe here the identification, purification, characterization, and sequencing of a novel burst-inhibiting acid phosphatase from the facultative intracellular bacterium, Francisella tularensis. Similar to other the burst-inhibiting Acps, F. tularensis Acp (AcpA) is tartrate-resistant and has broad substrate specificity. The AcpA enzyme is unique, however, in that it is easily released from the bacterial cell in soluble form, is a basic enzyme, suppresses the respiratory burst of not only fMet-Leu-Phe but also phorbol 12-myristate 13-acetate-stimulated neutrophils and does not fit into any of the three currently recognized classes of acid phosphatase. We also report the complete nucleotide sequence of the gene acpA, encoding AcpA, and the deduced primary structure of its encoded polypeptide. Comparative sequence analyses of AcpA is discussed. To our knowledge, this is the first report describing the cloning and sequencing of a burst-inhibiting acid phosphatase.
Although many pathogenic copy number variations (CNVs) are associated with neuropsychiatric diseases, few of them have been functionally characterised. Here we report multiple schizophrenia cases with CNV abnormalities specific to unc-51-like kinase 4 (ULK4), a serine/threonine kinase gene. Deletions spanning exons 21-34 of ULK4 were present in 4 out of 3391 schizophrenia patients from the International Schizophrenia Consortium, but absent in 3181 controls. Deletions removing exons 33 and 34 of the large splice variant of ULK4 also were enriched in Icelandic schizophrenia and bipolar patients compared with 98,022 controls (P50.0007 for schizophrenia plus bipolar disorder). Combining the two cohorts gives a P-value less than 0.0001 for schizophrenia, or for schizophrenia plus bipolar disorder. The expression of ULK4 is neuron-specific and developmentally regulated. ULK4 modulates multiple signalling pathways that include ERK, p38, PKC and JNK, which are involved in stress responses and implicated in schizophrenia. Knockdown of ULK4 disrupts the composition of microtubules and compromises neuritogenesis and cell motility. Targeted Ulk4 deletion causes corpus callosum agenesis in mice. Our findings indicate that ULK4 is a rare susceptibility gene for schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.