The effects of UV-B radiation on 2 ciliate species (Glaucoma sp. and Cyclidium sp.) from a clear oligotrophic lake were examined under laboratory conditions with and without photoreactivating radiation (PRR: UV-A and visible light). Glaucoma sp. was exposed to 3 UV-B intensities at 4 temperatures to simulate a range of environmentally relevant conditions. Population growth of Glaucoma sp. declined with increasing levels of UV-B exposure in treatments receiving PRR; blocking PRR generally resulted in 100% mortality. Occurrence of cyclobutane pyrimidine dimers (CPDs [mb DNA]-1) was significantly reduced in Glaucoma sp. receiving PRR relative to those without PRR. These data indicate that photoenzymatic repair is a major component of UV-B tolerance in Glaucoma. At UV-B levels that Glaucoma sp. tolerated, Cyclidium sp. suffered 100% mortality and accumulated a similar level of CPDs whether or not PRR was blocked. Incubation of the 2 ciliates under UV-transparent and UV-blocking acrylics in the oligotrophic lake confirmed their relative sensitivities to UV radiation (UVR). Photoenzymatic repair in Glaucoma sp. was more efficient at 20°C than at 10, 15 and 25°C. The temperature-dependent nature of photoenzymatic repair underscores the need to consider the interactive effects of temperature and UVR on biota, particularly in the face of global climate change and rising incident UVR due to ozone depletion.
The brain of the adult fruit fly, Drosophila melanogaster, contains tyrosine hydroxylase, the rate-limiting enzyme required for catecholamine biosynthesis, as well as dopa decarboxylase. Catecholamines, principally dopamine, are also present. We have previously shown that pharmacological inhibition of tyrosine hydroxylase with alpha-methyl-p-tyrosine results in a dose-related inhibition of locomotor activity in adult organisms. Similar results were found with reserpine, a well-known inhibitor of catecholamine uptake into storage granules. The drug-induced inhibition could be prevented in each case by the concomitant administration of L-dopa. The single-copy gene coding for tyrosine hydroxylase in Drosophila is pale (ple). Both null and temperature-sensitive loss of function mutant alleles of ple are recessive embryonic lethals. Heterozygous null mutant flies have normal locomotor activity demonstrating that only a single dose of the wild type form of ple is required to support normal function. Both hemizygous and homozygous temperature-sensitive ple mutants (ple(ts1)) also show normal locomotor activity at the permissive temperature for this mutant allele (18 degrees C), which progressively declines as the temperature is increased to its restrictive level (29 degrees C). These abnormal locomotor effects are reversible by L-dopa. Thus the effects on locomotor activity resulting from the pharmacological inhibition of catecholamine synthesis or storage are the same as those resulting from lack of tyrosine hydroxylase expression. These findings indicate that brain catecholamine loss decreases locomotor activity in the fly, as it does in mammals, and demonstrate the ability of functional genomic studies to mimic that of pharmacological inhibition of enzyme function or other similar processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.