Entry of HIV-1 into target cells requires cell-surface CD4 and additional host cell cofactors. A cofactor required for infection with virus adapted for growth in transformed T-cell lines was recently identified and named fusin. However, fusin does not promote entry of macrophage-tropic viruses, which are believed to be the key pathogenic strains in vivo. The principal cofactor for entry mediated by the envelope glycoproteins of primary macrophage-tropic strains of HIV-1 is CC-CKR-5, a receptor for the beta-chemokines RANTES, MIP-1alpha and MIP-1beta.
Chemokines direct the trafficking of white blood cells in immune surveillance, playing a key role in inflammatory and infectious diseases such as AIDS. All chemokines studied so far are secreted proteins of relative molecular mass approximately 7K-15K and fall into three families that are defined by a cysteine signature motif: CXC, CC and C (refs 3, 6, 7), where C is a cysteine and X any amino-acid residue. We report here the identification and characterization of a fourth human chemokine type, derived from non-haemopoietic cells and bearing a new CX3C fingerprint. Unlike other chemokine types, the polypeptide chain of the human CX3C chemokine is predicted to be part of a 373-amino-acid protein that carries the chemokine domain on top of an extended mucin-like stalk. This molecule can exist in two forms: either membrane-anchored or as a shed 95K glycoprotein. The soluble CX3C chemokine has potent chemoattractant activity for T cells and monocytes, and the cell-surface-bound protein, which is induced on activated primary endothelial cells, promotes strong adhesion of those leukocytes. The structure, biochemical features, tissue distribution and chromosomal localization of CX3C chemokine all indicate that it represents a unique class of chemokine that may constitute part of the molecular control of leukocyte traffic at the endothelium.
The chemokine stromal cell–derived factor (SDF-1; also known as chemokine ligand 12 [CXCL12]) regulates many essential biological processes, including cardiac and neuronal development, stem cell motility, neovascularization, angiogenesis, apoptosis, and tumorigenesis. It is generally believed that SDF-1 mediates these many disparate processes via a single cell surface receptor known as chemokine receptor 4 (CXCR4). This paper characterizes an alternate receptor, CXCR7, which binds with high affinity to SDF-1 and to a second chemokine, interferon-inducible T cell α chemoattractant (I-TAC; also known as CXCL11). Membrane-associated CXCR7 is expressed on many tumor cell lines, on activated endothelial cells, and on fetal liver cells, but on few other cell types. Unlike many other chemokine receptors, ligand activation of CXCR7 does not cause Ca2+ mobilization or cell migration. However, expression of CXCR7 provides cells with a growth and survival advantage and increased adhesion properties. Consistent with a role for CXCR7 in cell survival and adhesion, a specific, high affinity small molecule antagonist to CXCR7 impedes in vivo tumor growth in animal models, validating this new receptor as a target for development of novel cancer therapeutics.
Leukocyte trafficking at the endothelium requires both cellular adhesion molecules and chemotactic factors. Fractalkine, a novel transmembrane molecule with a CX3C-motif chemokine domain atop a mucin stalk, induces both adhesion and migration of leukocytes. Here we identify a seven-transmembrane high-affinity receptor for fractalkine and show that it mediates both the adhesive and migratory functions of fractalkine. The receptor, now termed CX3CR1, requires pertussis toxin-sensitive G protein signaling to induce migration but not to support adhesion, which also occurs without other adhesion molecules but requires the architecture of a chemokine domain atop the mucin stalk. Natural killer cells predominantly express CX3CR1 and respond to fractalkine in both migration and adhesion. Thus, fractalkine and CX3CR1 represent new types of leukocyte trafficking regulators, performing both adhesive and chemotactic functions.
An important process in the immune response is the migration of different populations of lymphocytes at the proper time to sites of antigenic challenge. Although several chemoattractants are known for broad classes of lymphocytes, such as T and B cells, the process by which lymphocytes of specific subsets, such as helper, cytotoxic or memory T cells, migrate to the appropriate sites remains obscure. Interleukin-8 is a chemoattractant for T cells and neutrophils and is a member of a superfamily of soluble molecules related by a conserved motif containing four cysteine residues. IL-8 and related molecules, including platelet factor 4, constitute the C-X-C class of the superfamily and a group of cytokines produced by haematopoietic cells constitute the RANTES/sis or C-C class. The roles of most of these molecules are not well known, although murine MIP-1 alpha of the C-C branch is a specific inhibitor of haematopoietic stem cell proliferation and some members of the C-X-C branch are neutrophil-targeted inflammatory agents. Here we report that the RANTES protein of the C-C class causes the selective migration of human blood monocytes and of T lymphocytes expressing the cell surface antigens CD4 and UCHL1. CD4+/UCHL1+T cells are thought to be prestimulated or primed helper T cells involved in memory T cell function. The preferential attraction of T-cell subsets by specific cytokines could in part explain how lymphocytes are targeted, and may provide insight into the workings of T cell memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.