Mucin-type O-linked oligosaccharides (O-glycans) are primary components of the intestinal mucins thatform the mucus gel layer overlying the gut epithelium. Impaired expression of intestinal O-glycans has been observed in patients with ulcerative colitis (UC), but its role in the etiology of this disease is unknown. Here, we report that mice with intestinal epithelial cell-specific deficiency of core 1-derived O-glycans, the predominant form of O-glycans, developed spontaneous colitis that resembled human UC, including massive myeloid infiltrates and crypt abscesses. The colitis manifested in these mice was also characterized by TNF-producing myeloid infiltrates in colon mucosa in the absence of lymphocytes, supporting an essential role for myeloid cells in colitis initiation. Furthermore, induced deletion of intestinal core 1-derived O-glycans caused spontaneous colitis in adult mice. These data indicate a causal role for the loss of core 1-derived O-glycans in colitis. Finally, we detected a biosynthetic intermediate typically exposed in the absence of core 1 O-glycan, Tn antigen, in the colon epithelium of a subset of UC patients. Somatic mutations in the X-linked gene that encodes core 1 β1,3-galactosyltransferase-specific chaperone 1 (C1GALT1C1, also known as Cosmc), which is essential for core 1 O-glycosylation, were found in Tn-positive epithelia. These data suggest what we believe to be a new molecular mechanism for the pathogenesis of UC.
Antibiotic exposure was an important risk factor for CA-CDI, but the risk was different amongst different antibiotic classes. The risk was greatest with clindamycin followed by fluoroquinolones and cephalosporins, whereas tetracyclines were not associated with an increased risk.
Adeno-associated virus (AAV) is a promising vector for central nervous system (CNS) gene transfer, but a number of issues must be addressed if AAV is to be used for widespread delivery throughout the CNS. Our aim was to test the effect of dose, route of delivery, and hydroxyurea treatment on brain expression of beta-galactosidase activity after cerebral inoculation with an rAAV-lacZ vector (rAAV-beta-gal). We also wished to test whether an immune response appeared against the vector and the transgene product. We found in BALB/c mice that beta-Gal expression increased during the first 2 months after inoculation, then decreased slightly by 4 months, and continued out to 6, 12, and 15 months in single animals. Cerebral injection produced localized beta-Gal expression that did not diffuse to other regions despite a fivefold increase in injection volume. Intraventricular injection resulted in negligible transduction. Antibodies to AAV capsid protein and beta-Gal appeared at low levels at 2 and 4 months, but correlated poorly with beta-Gal expression and did not prevent readministration of rAAV-beta-gal. Hydroxyurea treatment did not result in increased transduction in vivo. We conclude that our study confirms rAAV vectors as having considerable potential for CNS gene transfer; however, several important problems must be addressed if this vector system is to be used for long-term transduction of the entire brain. Sustained, regulatable expression will be needed if rAAV is to be used in the treatment of chronic CNS disease. The difficulty in delivering AAV to diverse regions of the brain is an important problem that must be overcome if these vectors are to be used for anything beyond localized transduction.
Gene transfer to muscle holds overt promise for the treatment of inherited myopathies, lysosomal storage disorders, and serum protein deficiencies. In addition, muscle could provide a reservoir for delivery of therapeutic molecules like blood clotting factors, erythropoietin, or insulin. To date, successful gene transfer to muscle has been limited by the inefficiency of the vector delivery systems and the transient nature of gene expression. In this paper, we show that a vector based on recombinant adeno-associated virus (rAAV) can efficiently transduce adult mouse skeletal muscle. Transduced myofibers escape immune elimination and transgene expression is robust beyond 5 months. Importantly, input vector DNA appears to undergo conversion from single-stranded genomes to high-molecular-weight concatameric forms. These data suggest that rAAV might have a significant advantage over many other viral and nonviral gene delivery methods, and holds significant promise as a vector for gene transfer to mature muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.