Beta-transducing repeat-containing protein (betaTrCP) targets the ubiquitination and subsequent degradation of both beta-catenin and IkappaB, thereby playing an important role in beta-catenin/Tcf and NF-kappaB-dependent signaling. Here evidence is presented that beta-catenin/Tcf signaling elevates the expression of betaTrCP mRNA and protein in a Tcf-dependent manner, which does not require betaTrCP transcription. Induction of betaTrCP expression by the beta-catenin/Tcf pathway results in an accelerated degradation of the wild-type beta-catenin, suggesting that the negative feedback loop regulation may control the beta-catenin/Tcf pathway. This signaling also upregulated NF-kappaB transactivation without affecting the activity of IkappaB kinase, thereby establishing that the maintenance of the betaTrCP level is important for coordination between beta-catenin/Tcf and NF-kappaB signaling.
The mouse skin carcinogenesis protocol is a unique model for understanding the molecular events leading to oncogenic transformation. Mutations in the Ha-ras gene, and the presence of functional cyclin D1 and the EGF receptor, have proven to be important in this system. However, the signal transduction pathways connecting these elements during mouse skin carcinogenesis are poorly understood. This paper studies the relevance of the Akt and ERK pathways in the di erent stages of chemically induced mouse skin tumors. Akt activity increases throughout the entire process, and its early activation is detected prior to increased cyclin D1 expression. ERK activity rises only during the later stages of malignant conversion. The observed early increase in Akt activity appears to be due to raised PI-3K activity. Other factors acting on Akt such as ILK activation and decreased PTEN phosphatase activity appear to be involved at the conversion stage. To further con®rm the involvement of Akt in this process, PB keratinocytes were transfected with Akt and subsequently injected into nude mice. The expression of Akt accelerates tumorigenesis and contributes to increased malignancy of these keratinocytes as demonstrated by the rate of appearance, the growth and the histological characteristics of the tumors. Collectively, these data provide evidence that Akt activation is one of the key elements during the di erent steps of mouse skin tumorigenesis.
Abstract. Gap junctional intercellular communication (GJIC) of cultured mouse epidermal cells is mediated by a gap junction protein, connexin 43, and is dependent on the calcium concentration in the medium, with higher GJIC in a high-calcium (1.2 mM) medium . In several mouse epidermal cell lines, we found a good correlation between the level of GJIC and that of immunohistochemical staining of E-cadherin, a calciumdependent cell adhesion molecule, at cell-cell contact areas. The variant cell line P3/22 showed both low GJIC and E-cadherin protein expression in low-and high-Cal+ media. P3/22 cells showed very low E-cadherin mRNA expression. To test directly whether E-cadherin is involved in the Caz+-dependent regulation G
Metastatic malignant melanoma is an extremely aggressive cancer, with no currently viable therapy. 4-Allyl-2-methoxyphenol (eugenol) was tested for its ability to inhibit proliferation of melanoma cells. Eugenol but not its isomer, isoeugenol (2-methoxy-4-propenylphenol), was found to be a potent inhibitor of melanoma cell proliferation. In a B16 xenograft study, eugenol treatment produced a significant tumor growth delay (p = 0.0057), an almost 40% decrease in tumor size, and a 19% increase in the median time to end point. More significantly, 50% of the animals in the control group died from metastatic growth, whereas none in the treatment group showed any signs of invasion or metastasis. Eugenol was well tolerated as determined by measurement of bodyweights. Examination of the mechanism of the antiproliferative action of eugenol in the human malignant melanoma cell line, WM1205Lu, showed that it arrests cells in the S phase of the cell cycle. Flow cytometry coupled with biochemical analyses demonstrated that eugenol induced apoptosis. cDNA array analysis showed that eugenol caused deregulation of the E2F family of transcription factors. Transient transfection assays and electrophoretic mobility shift assays showed that eugenol inhibits the transcriptional activity of E2F1. Overexpression of E2F1 restored about 75% of proliferation ability in cultures. These results indicate that deregulation of E2F1 may be a key factor in eugenol-mediated melanoma growth inhibition both in vitro and in vivo. Since the E2F transcription factors provide growth impetus for the continuous proliferation of melanoma cells, these results suggest that eugenol could be developed as an E2F-targeted agent for melanoma treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.