The purpose of this work was to develop an end-to-end patient-specific quality assurance (QA) technique for spot-scanned proton therapy that is more sensitive and efficient than traditional approaches. The patient-specific methodology relies on independently verifying the accuracy of the delivered proton fluence and the dose calculation in the heterogeneous patient volume. A Monte Carlo dose calculation engine, which was developed in-house, recalculates a planned dose distribution on the patient CT data set to verify the dose distribution represented by the treatment planning system. The plan is then delivered in a pre-treatment setting and logs of spot position and dose monitors, which are integrated into the treatment nozzle, are recorded. A computational routine compares the delivery log to the DICOM spot map used by the Monte Carlo calculation to ensure that the delivered parameters at the machine match the calculated plan. Measurements of dose planes using independent detector arrays, which historically are the standard approach to patient-specific QA, are not performed for every patient. The nozzle-integrated detectors are rigorously validated using independent detectors in regular QA intervals. The measured data are compared to the expected delivery patterns. The dose monitor reading deviations are reported in a histogram, while the spot position discrepancies are plotted vs. spot number to facilitate independent analysis of both random and systematic deviations. Action thresholds are linked to accuracy of the commissioned delivery system. Even when plan delivery is acceptable, the Monte Carlo second check system has identified dose calculation issues which would not have been illuminated using traditional, phantom-based measurement techniques. The efficiency and sensitivity of our patient-specific QA program has been improved by implementing a procedure which independently verifies patient dose calculation accuracy and plan delivery fidelity. Such an approach to QA requires holistic integration and maintenance of patient-specific and patient-independent QA.
PurposePencil-beam scanning intensity modulated proton therapy (IMPT) may allow for an improvement in the therapeutic ratio compared with conventional techniques of radiation therapy delivery for pancreatic cancer. The purpose of this study was to describe the clinical implementation of IMPT for intact and clinically localized pancreatic cancer, perform a matched dosimetric comparison with volumetric modulated arc therapy (VMAT), and report acute adverse event (AE) rates and patient-reported outcomes (PROs) of health-related quality of life.Methods and materialsBetween July 2016 and March 2017, 13 patients with localized pancreatic cancer underwent concurrent capecitabine or 5-fluorouracil-based chemoradiation therapy (CRT) utilizing IMPT to a dose of 50 Gy (radiobiological effectiveness: 1.1). A VMAT plan was generated for each patient to use for dosimetric comparison. Patients were assessed prospectively for AEs and completed PRO questionnaires utilizing the Functional Assessment of Cancer Therapy-Hepatobiliary at baseline and upon completion of CRT.ResultsThere was no difference in mean target coverage between IMPT and VMAT (P > .05). IMPT offered significant reductions in dose to organs at risk, including the small bowel, duodenum, stomach, large bowel, liver, and kidneys (P < .05). All patients completed treatment without radiation therapy breaks. The median weight loss during treatment was 1.6 kg (range, 0.1-5.7 kg). No patients experienced grade ≥3 treatment-related AEs. The median Functional Assessment of Cancer Therapy-Hepatobiliary scores prior to versus at the end of CRT were 142 (range, 113-163) versus 136 (range, 107-173; P = .18).ConclusionsPencil-beam scanning IMPT was feasible and offered significant reductions in radiation exposure to multiple gastrointestinal organs at risk. IMPT was associated with no grade ≥3 gastrointestinal AEs and no change in baseline PROs, but the conclusions are limited due to the patient sample size. Further clinical studies are warranted to evaluate whether these dosimetric advantages translate into clinically meaningful benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.