We describe the highly selective palladium catalyzed kinetic resolutions of the racemic cyclic allylic carbonates rac-1 a-c and racemic acyclic allylic carbonates rac-3 aa and rac-3 ba through reaction with tert-butylsulfinate, tolylsulfinate, phenylsulfinate anions and 2-pyrimidinethiol by using N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphosphino)-benzamide] (BPA) as ligand. Selectivities are expressed in yields and ee values of recovered substrate and product and in selectivity factors S. The reaction of the cyclohexenyl carbonate 1 a (>/=99 % ee) with 2-pyrimidinethiol in the presence of BPA was shown to exhibit, under the conditions used, an overall pseudo-zero order kinetics in regard to the allylic substrate. Also described are the highly selective palladium catalyzed asymmetric syntheses of the cyclic and acyclic allylic tert-butylsulfones 2 aa, 2 b, 2 c, 2 d and 4 a-c, respectively, and of the cyclic and acyclic allylic 2-pyrimidyl-, 2-pyridyl-, and 4-chlorophenylsulfides 5 aa, 5 b, 5 ab, 6 aa-ac, 6 ba and 6 bb, respectively, from the corresponding racemic carbonates and sulfinate anions and thiols, respectively, in the presence of BPA. Synthesis of the E-configured allylic sulfides 6 aa, 6 ab, 6 ac and 6 bb was accompanied by the formation of minor amounts of the corresponding Z isomers. The analogous synthesis of allylic tert-butylsulfides from allylic carbonates and tert-butylthiol by using BPA could not be achieved. Reaction of the cyclopentenyl esters rac-1 da and rac-1 db with 2-pyrimidinethiol gave the allylic sulfide 5 c having only a low ee value. Similar results were obtained in the case of the reaction of the cyclohexenyl carbonate rac-1 a and of the acyclic carbonates rac-3 aa and rac-3 ba with 2-pyridinethiol and lead to the formation of the sulfides 5 ab, 6 ab, and 6 bb, respectively. The low ee values may be ascribed to the operating of a "memory effect", that is, both enantiomers of the substrate give the substitution product with different enantioselectivities. However, in the reaction of the racemic carbonate rac-1 a as well as of the highly enriched enantiomers 1 a (>/=99 % ee) and ent-1 a (>/=99 % ee) with 2-pyrimidinethiol the ee values of the substrates and the substitution product remained constant until complete conversion. Similar results were obtained in the reaction of the cyclic carbonates rac-1 a, ent-1 a (>/=99 % ee) and ent-1 c (>/=99 % ee) with lithium tert-butylsulfinate. Thus, in the case of rac-1 a and 2-pyrimidinthiol and tert-butylsulfinate anion as nucleophiles the enantioselectivity of the substitution step is, under the conditions used, independent of the chirality of the substrate; this shows that no "memory effect" is operating in this case. Hydrolysis of the carbonates ent-1 a-c, ent-3 aa and ent-3 ba, which were obtained through kinetic resolution, afforded the enantiomerically highly enriched cyclic allylic alcohols 9 a-c (>/=99 % ee) and acyclic allylic alcohols 10 a (>/=99 % ee) and 10 b (99 % ee), respectively.
Described is an asymmetric synthesis of cyclic and acyclic allylic S-aryl and S-alkyl sulfones through a highly selective palladium(0)-catalyzed 1,3-rearrangement of racemic allylic sulfinates. Treatment of racemic cyclic and acyclic allylic S-tolyl- and S-tert-butylsulfinates with Pd(2)(dba)(3).CHCl(3) as precatalyst and N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphosphino)benzamide] as ligand for the palladium atom afforded the corresponding isomeric allylic S-tolyl and S-tert-butyl sulfones of 93-99% ee in 82-96% yield. The rearrangement of the allylic sulfinates most likely proceeds in an intermolecular fashion via formation of a cationic pi-allylpalladium complex and the sulfinate ion. The racemic allylic sulfinates were obtained from the corresponding racemic alcohols and racemic tolylsulfinyl chloride and racemic tert-butylsulfinyl chloride, respectively, in high yields. Rearrangement of the racemic tert-butylsulfinic acid 2-cyclooct-1-enyl ester with Pd(2)(dba)(3).CHCl(3) and the bisphosphane was accompanied by a highly selective kinetic resolution of the substrate and gave at 50% conversion the (R)-configured sulfinate as mixture of the S(S) and R(S) diastereomers of 92% ee and 85% ee and the (S)-configured 3-tert-butylsulfonyl cyclooctene sulfone 15a with 98% ee in almost quantitative yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.