A newly compiled data set of nearly complete sequences of the large subunit of the nuclear ribosome (LSU or 28S) sampled from 31 diverse medusozoans greatly clarifies the phylogenetic history of Cnidaria. These data have substantial power to discern among many of the competing hypotheses of relationship derived from prior work. Moreover, LSU data provide strong support at key nodes that were equivocal based on other molecular markers. Combining LSU sequences with those of the small subunit of the nuclear ribosome (SSU or 18S), we present a detailed working hypothesis of medusozoan relationships and discuss character evolution within this diverse clade. Stauromedusae, comprising the benthic, so-called stalked jellyfish, appears to be the sister group of all other medusozoans, implying that the free-swimming medusa stage, the motor nerve net, and statocysts of ecto-endodermal origin are features derived within Medusozoa. Cubozoans, which have had uncertain phylogenetic affinities since the elucidation of their life cycles, form a clade-named Acraspeda-with the scyphozoan groups Coronatae, Rhizostomeae, and Semaeostomeae. The polyps of both cubozoans and hydrozoans appear to be secondarily simplified. Hydrozoa is comprised by two well-supported clades, Trachylina and Hydroidolina. The position of Limnomedusae within Trachylina indicates that the ancestral hydrozoan had a biphasic life cycle and that the medusa was formed via an entocodon. Recently hypothesized homologies between the entocodon and bilaterian mesoderm are therefore suspect. Laingiomedusae, which has often been viewed as a close ally of the trachyline group Narcomedusae, is instead shown to be unambiguously a member of Hydroidolina. The important model organisms of the Hydra species complex are part of a clade, Aplanulata, with other hydrozoans possessing direct development not involving a ciliated planula stage. Finally, applying phylogenetic mixture models to our data proved to be of little additional value over a more traditional phylogenetic approach involving explicit hypothesis testing and bootstrap analyses under multiple optimality criteria. [18S; 28S; Cubozoa; Hydrozoa; medusa; molecular systematics; polyp; Scyphozoa; Staurozoa.].
In summer 2003 central Europe suffered an unusually severe heat wave, with air temperatures similar to those predicted for an average summer during the late 21st century. We use a unique set of over half a century of lake data from two lakes in Switzerland to determine the effect of the 2003 heat wave on water temperature and oxygen conditions in order to assess how temperate lakes will react when exposed to the increased ambient summer air temperatures that will be encountered in a generally warmer world and to test the predictions of relevant simulation models. In both lakes, surface temperature and thermal stability in summer 2003 were the highest ever recorded, exceeding the long-term mean by more than 2.5 standard deviations. The extremely high degree of thermal stability resulted in extraordinarily strong hypolimnetic oxygen depletion. These results are consistent with the predictions of the simulation models. Additionally, the results indicate that climatic warming will increase the risk of occurrence of deep-water anoxia, thus counteracting long-term efforts that have been undertaken to ameliorate the effects of anthropogenic eutrophication.
Recent studies have highlighted the impact of the winter North Atlantic Oscillation (NAO) on water temperature, ice conditions, and spring plankton phenology in specific lakes and regions in Europe. Here, we use meta-analysis techniques to test whether 18 lakes in northern, western, and central Europe respond coherently to winter climate forcing, and to assess the persistence of the winter climate signal in physical, chemical, and biological variables during the year. A meta-analysis approach was chosen because we wished to emphasize the overall coherence pattern rather than individual lake responses. A particular strength of our approach is that time-series from each of the 18 lakes were subjected to the same robust statistical analysis covering the same 23-year period. Although the strongest overall coherence in response to the winter NAO was exhibited by lake water temperatures, a strong, coherent response was also exhibited by concentrations of soluble reactive phosphorus and soluble reactive silicate, most likely as a result of the coherent response exhibited by the spring phytoplankton bloom. Lake nitrate concentrations showed significant coherence in winter. With the exception of the cyanobacterial biomass in summer, phytoplankton biomass in all seasons was unrelated to the winter NAO. A strong coherence in the abundance of daphnids during spring can most likely be attributed to coherence in daphnid phenology. A strong coherence in the summer abundance of the cyclopoid copepods may have been related to a coherent change in their emergence from resting stages. We discuss the complex nature of the potential mechanisms that drive the observed changes.
The overenrichment (eutrophication) of aquatic ecosystems with nutrients leading to algal blooms and anoxic conditions has been a persistent and widespread environmental problem. Although there are many studies on the ecological impact of elevated phosphorus (P) levels (e.g., decrease in biodiversity and water quality), little is known about the evolutionary consequences for animal species. We reconstructed the genetic architecture of a Daphnia species complex in 2 European lakes using diapausing eggs that were isolated from sediment layers covering the past 100 years. Changes in total P were clearly associated with a shift in species composition and the population structure of evolutionary lineages. Although environmental conditions were largely reestablished after peak eutrophication during the 1970s and 1980s, original species composition and the genetic architecture of species were not restored but evolved along new evolutionary trajectories. Our data demonstrate that anthropogenically induced temporal alterations of habitats are associated with long-lasting changes in communities and species via interspecific hybridization and introgression.biological archive ͉ eutrophication ͉ hybridization ͉ introgression ͉ invasiveness
Twenty to fifty years of annual mean deepwater (hypolimnetic) temperature data from twelve deep lakes spaced across Europe (2u959W to 14u09E, 46u279 to 59u009N) show a high degree of coherence among lakes, particularly within geographic regions. Hypolimnetic temperatures vary between years but increased consistently in all lakes by about 0.1-0.2uC per decade. The observed increase was related to the weather generated by largescale climatic processes over the Atlantic. To be effective, the climatic signal from the North Atlantic Oscillation (NAO) must affect deep lakes in spring before the onset of thermal stratification. The most consistent predictor of hypolimnetic temperature is the mean NAO index for January-May (NAO J-M ), which explains 22-63% of the interannual variation in deepwater temperature in 10 of the 12 lakes. The two exceptions are remote, less windexposed alpine valley lakes. In four of the deepest lakes, the climate signal fades with depth. The projected hypolimnetic temperature increase of approximately 1uC in 100 yr, obtained using a conservative approach, seems small. Effects on mixing conditions, thermal stability, or the replenishment of oxygen to deep waters result in accumulation of nutrients, which in turn will affect the trophic status and the food web.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.