The development of ‘molecular-omic’ tools and computing analysis platforms have greatly enhanced our ability to assess the impacts of agricultural practices and crop management protocols on soil microbial diversity. However, biotic factors are rarely factored into agricultural management models. Today it is possible to identify specific microbiomes and define biotic components that contribute to soil quality. We assessed the bacterial diversity of soils in 51 potato production plots. We describe a strategy for identifying a potato-crop-productivity bacterial species balance index based on amplicon sequence variants. We observed a significant impact of soil texture balances on potato yields; however, the Shannon and Chao1 richness indices and Pielou’s evenness index poorly correlated with these yields. Nonetheless, we were able to estimate the portion of the total bacterial microbiome related to potato yield using an integrated species balances index derived from the elements of the bacterial microbiome that positively or negatively correlate with residual potato yields. This innovative strategy based on a microbiome selection procedure greatly enhances our ability to interpret the impact of agricultural practices and cropping system management choices on microbial diversity and potato yield. This strategy provides an additional tool that will aid growers and the broader agricultural sector in their decision-making processes concerning the soil quality and crop productivity.
Organic fertilization in greenhouses relies on organic fertilizers with low carbon/nitrogen ratio. Nitrogen (N) availability thus depends on an efficient mineralization driven by microbial communities. However, data on the mineralization rate of such fertilizers are scarce, and their improper use can lead to either N deficiency, or N losses to the environment. Consequently, better knowledge of N availability following organic fertilization is crucial for the development of sustainable greenhouse organic horticulture. We investigated the effect of pelleted poultry manure (PM) and blood (BM), feather (FM), alfalfa (AM), and shrimp (SM) meals on N availability and bacterial communities in a peat-based organic growing medium and a mineral soil. Nitrogen and carbon (C) pools were measured periodically over a 52 wk incubation experiment. Bacterial communities were characterized by sequencing the regions V6–V8 of the 16S rRNA gene on the high-throughput Illumina MiSeq platform, 4 wk after the start of the incubation. Nitrogen mineralization plateaued for the mineral soil and the peat substrate at, respectively, 41% and 63% of applied N for PM, 56%–93% (BM), 54%–81% (FM), 34%–53% (AM), and 57%–73% (SM). Organic fertilizers supported markedly contrasted bacterial communities, closely linked to soil biochemical properties, especially mineral N, pH, and soluble C. Alfalfa meal promoted the highest Shannon diversity index in the mineral soil, whereas SM and PM increased it in the peat-based growing medium. Our results quantified the mineralization and highlighted the impact on bacterial communities of commonly used organic N fertilizers in conditions relevant to organic greenhouse horticulture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.