Summary Background Reoperation rates are high after surgery for hip fractures. We investigated the effect of a sliding hip screw versus cancellous screws on the risk of reoperation and other key outcomes. Methods For this international, multicentre, allocation concealed randomised controlled trial, we enrolled patients aged 50 years or older with a low-energy hip fracture requiring fracture fixation from 81 clinical centres in eight countries. Patients were assigned by minimisation with a centralised computer system to receive a single large-diameter screw with a side-plate (sliding hip screw) or the present standard of care, multiple small-diameter cancellous screws. Surgeons and patients were not blinded but the data analyst, while doing the analyses, remained blinded to treatment groups. The primary outcome was hip reoperation within 24 months after initial surgery to promote fracture healing, relieve pain, treat infection, or improve function. Analyses followed the intention-to-treat principle. This study was registered with ClinicalTrials.gov, number NCT00761813. Findings Between March 3, 2008, and March 31, 2014, we randomly assigned 1108 patients to receive a sliding hip screw (n=557) or cancellous screws (n=551). Reoperations within 24 months did not differ by type of surgical fixation in those included in the primary analysis: 107 (20%) of 542 patients in the sliding hip screw group versus 117 (22%) of 537 patients in the cancellous screws group (hazard ratio [HR] 0.83, 95% CI 0.63–1.09; p=0.18). Avascular necrosis was more common in the sliding hip screw group than in the cancellous screws group (50 patients [9%] vs 28 patients [5%]; HR 1.91, 1.06–3.44; p=0.0319). However, no significant difference was found between the number of medically related adverse events between groups (p=0.82; appendix); these events included pulmonary embolism (two patients [<1%] vs four [1%] patients; p=0.41) and sepsis (seven [1%] vs six [1%]; p=0.79). Interpretation In terms of reoperation rates the sliding hip screw shows no advantage, but some groups of patients (smokers and those with displaced or base of neck fractures) might do better with a sliding hip screw than with cancellous screws. Funding National Institutes of Health, Canadian Institutes of Health Research, Stichting NutsOhra, Netherlands Organisation for Health Research and Development, Physicians’ Services Incorporated.
Purpose To find out if there is an association between ligament laxity measured intraoperatively and functional outcome 1 year after total knee arthroplasty (TKA).MethodsMedial and lateral ligament laxities were measured intraoperatively in extension and in 90° of flexion in 108 patients [122 knees; median age 70 (range 42–83) years]. Mechanical axes were measured preoperatively and at 1-year follow-up. Outcome measures were the Knee Injury and Osteoarthritis Outcome Score (KOOS), the Knee Society Clinical Rating System, the Oxford Knee Score and patient satisfaction. The relationships between laxity and outcome scores were examined by median regression analyses.ResultsPost-operative mechanical axis had a significant effect on the association between ligament laxity and KOOS. Therefore, the material was stratified on post-operative mechanical axis. In perfectly aligned and valgus-aligned TKAs, there was a negative correlation between medial laxity and all subscores in KOOS. The most important regression coefficient (β) was recorded for the effect of medial laxity in extension on activities of daily living (ADLs) (β = −7.32, p < 0.001), sport/recreation (β = −6.9, p = 0.017) and pain (β = −5.9, p = 0.006), and for the effect of medial laxity in flexion on ADLs (β = −3.11, p = 0.023) and sport/recreation (β = −4.18, p = 0.042). ConclusionsIn order to improve the functional results after TKA, orthopaedic surgeons should monitor ligament laxity and mechanical axis intraoperatively and avoid medial laxity more than 2 mm in extension and 3 mm in flexion in neutral and valgus-aligned knees.Level of evidenceII.
BackgroundEarly diagnosis of idiopathic scoliosis allows for observation and timely initiation of brace treatment in order to halt progression. School scoliosis screening programs were abolished in Norway in 1994 for lack of evidence that the programs improved outcome and for the costs involved. The consequences of this decision are discussed.ObjectivesTo describe the detection, patient characteristics, referral patterns and treatment of idiopathic scoliosis at a scoliosis clinic during the period 2003–2011, when there was no screening and to compare treatment modalities to the period 1976–1988 when screening was performed.MethodsPatient demographics, age at detection, family history, clinical and radiological charts of consecutive patients referred for scoliosis evaluation during the period 2003–2011, were prospectively registered. Patients were recruited from a catchment area of about 500000 teenagers. Maturity was estimated according to Risser sign and menarcheal status. Severity of pain was recorded by a verbal 5-point scale from no pain to pain at all times. Physical and neurological examinations were conducted. The detector and patient characteristics were recorded. Referral patterns of orthopedic surgeons at local hospitals and other health care providers were recorded. Patient data was obtained by spine surgeons. Treatment modalities in the current period were compared to the period 1976–1988.ResultsWe registered 752 patients with late onset juvenile and adolescent idiopathic scoliosis from 2003–2011. There were 644 (86%) girls and 108 (14%) boys. Mean age at detection was 14.6 (7–19) years. Sixty percent had Risser sign ≥ 3, whilst 74% were post menarche with a mean age at menarche of 13.2 years. Thirty-one percent had a family history of scoliosis. The mean major curve at first consultation at our clinic was 38° (10°-95°). About 40% had a major curve >40°. Seventy-one percent were detected by patients, close relatives, and friends. Orthopaedic surgeons referred 61% of the patients. The mean duration from detection to the first consultation was 20(0–27) months. The proportion of the average number of patients braced each year was 68% during the period with screening compared to 38% in the period without screening, while the proportion for those operated was 32% and 62%, respectively ( p=0.002, OR 3.5, (95%CI 1.6 to 7.5).ConclusionIn the absence of scoliosis screening, lay persons most often detect scoliosis. Many patients presented with a mean Cobb angle approaching the upper limit for brace treatment indications. The frequency of brace treatment has been reduced and surgery is increased during the recent period without screening compared with the period in the past when screening was still conducted.
BackgroundLigament balancing is considered a prerequisite for good function and survival in total knee arthroplasty (TKA). However, there is no consensus on how to measure ligament balance intra-operatively and the degree of stability obtained after different balancing techniques is not clarified.PurposeThis study presents a new method to measure ligament balancing in TKA and reports on the results of a try-out of this method and its inter-observer reliability.MethodsAfter the implantation of the prosthesis, spatulas of different thickness were used to measure medial and lateral condylar lift-off in flexion and extension in 70 ligament-balanced knees and in 30 knees were ligament balancing was considered unnecessary. Inter-observer reliability for the new method was estimated and the degree of medial–lateral symmetry in extension and in flexion, and the equality of the extension gaps and flexion gaps were calculated.ResultsThe method was feasible in all operated knees, and found to be very reliable (intraclass correlation coefficient = 0.88). We found no statistically significant difference in condylar lift-off between the ligament-balanced and the non ligament-balanced group, however, there was a tendency to more outliers in flexion in the ligament-balanced group.ConclusionsOur method for measuring ligament balance is reliable and provides valuable information in assessing laxity intra-operatively. This method may be a useful tool in further research on the relationship between ligament balance, function and survival of TKA.
Background Different techniques have been used to quantify the movement of sacroiliac (SI) joints. These include radiostereometric analysis (RSA), but the accuracy and precision of this method have not been properly evaluated and it is unclear how many markers are required and where they should be placed to achieve proper accuracy and precision. Purpose The purpose of this study was to test accuracy and precision of RSA, applied to the SI joint, in a phantom model and in patients. Methods We used a plastic phantom attached to a micrometer to obtain a true value of the movement of the SI joint and compared this value with the measured value obtained by RSA; the difference represented the accuracy. The precision of the system was measured by double examination in the phantom and in six patients, and was expressed by a limit of significance (LOS). We analyzed different marker distributions to find optimal marker placement and number of markers needed. Results The accuracy was high and we identified no systematic errors. The precision of the phantom was high with a LOS less than 0.25°and 0.16 mm for all directions, and in patients, the precision was less than 0.71°for rotations and 0.47 mm translations. No markers were needed in the pubic symphysis to obtain good precision. Conclusions The accuracy and precision are high when RSA is used to measure movement in the SI joint and support the use of RSA in research of SI joint motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.