We present a satellite attitude control system design using low-cost hardware and software for a 1U CubeSat. The attitude control system architecture is a crucial subsystem for any satellite mission since precise pointing is often required to meet mission objectives. The accuracy and precision requirements are even more challenging for small satellites where limited volume, mass, and power are available for the attitude control system hardware. In this proposed embedded attitude control system design for a 1U CubeSat, pointing is obtained through a two-stage approach involving coarse and fine control modes. Fine control is achieved through the use of three reaction wheels or three magnetorquers and one reaction wheel along the pitch axis. Significant design work has been conducted to realize the proposed architecture. In this paper, we present an overview of the embedded attitude control system design; the verification results from numerical simulation studies to demonstrate the performance of a CubeSat-class nanosatellite; and a series of air-bearing verification tests on nanosatellite attitude control system hardware that compares the performance of the proposed nonlinear controller with a proportional-integral-derivative controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.