Aging individuals and diabetic patients often exhibit concomitant reductions of skeletal muscle mass/strength and insulin sensitivity, suggesting an intimate link between muscle aging and insulin resistance. Foxo1, a member of the FOXO transcription factor family, is an important player in insulin signaling due to its inhibitory role in glucose uptake and utilization in skeletal muscle. Phosphorylation of Foxo1 is thought to mitigate the transactivation of pyruvate dehydrogenase lipoamide kinase 4 (PDK4), which is a negative regulator of the glycolytic enzyme pyruvate dehydrogenase (PDH). In contrast, how aging would regulate acetylation/deacetylation machineries and glucose utilization in skeletal muscle through the Foxo1/PDH axis remains largely undetermined. Accumulating body of evidence have shown that resveratrol, a natural polyphenol in grapes and red wine, activates the longevity-related protein sirtuin 1 (SIRT1) and augments insulin sensitivity in addition to its well-documented effects on mitochondrial energetics. The present review summarizes the role of Foxo1/SIRT1 in insulin signaling in skeletal muscle and proposes the insight that activation of SIRT1 deacetylase activity to deacetylate and suppress the Foxo1-induced transactivation of PDK4 may represent an anti-hyperglycemic mechanism of resveratrol in aging skeletal muscle.
Collectively, our data demonstrated that acylated ghrelin administration suppresses the doxorubicin-induced activation of apoptosis and enhances the cellular signalling of autophagy. The treatment of unacylated ghrelin has similar effects as acylated ghrelin on apoptotic and autophagic signalling, suggesting that the effects of ghrelin are probably mediated through a signalling pathway that is independent of GHSR-1a. These findings were consistent with the hypothesis that acylated ghrelin inhibits doxorubicin-induced upregulation of apoptosis in skeletal muscle while treatment of unacylated ghrelin can achieve similar effects as the treatment of acylated ghrelin. The inhibition of apoptosis and enhancement of autophagy induced by acylated and unacylated ghrelin might exert myoprotective effects on doxorubicin-induced toxicity in skeletal muscle.
Key pointsr Doxorubicin induced functional deteriorations and elevations of USP7-related apoptotic/catabolic signalling in the senescent heart r Resveratrol protects against doxorubicin-induced alterations through the restoration of SIRT1 deacetylase activity Abstract A compromised cardiac function is often seen in elderly cancer patients receiving doxorubicin therapy. The present study tested the hypothesis that acute intervention with resveratrol, a natural anti-oxidant found in grapes and red wine, reduces the cardiotoxicity of doxorubicin through restoration of sirtuin 1 (SIRT1) deacetylase activity, and attenuation of the catabolic/apoptotic pathways orchestrated by USP7, a p53 deubiquitinating protein, using young (aged 2 months) and old (aged 10 months) senescence-accelerated mice prone 8 (SAMP8). Animals were randomised to receive saline, doxorubicin, and doxorubicin in combination with resveratrol, in the presence or absence of SIRT1 inhibitors, sirtinol or EX527. Resveratrol alone, but not in combination with either of the SIRT1 inhibitors, suppressed the doxorubicin-induced impairment of cardiac systolic function in aged animals. Doxorubicin reduced SIRT1 deacetylase activity, and elevated proteasomal activity and USP7; it also increased the protein level of p300 and ubiquitinated proteins in hearts from aged SAMP8. These doxorubicin-induced alterations were prevented by resveratrol, whereas the protective action of resveratrol was antagonised by sirtinol and EX527. In young SAMP8 hearts, resveratrol attenuated the doxorubicin-induced increases in acetylation of Foxo1 and transactivation of MuRF-1, whereas these mitigations were not found after treatment with SIRT1 inhibitors. However, the protein contents of acetylated Foxo1 and MuRF-1 were not affected by any of the drugs studied in aged SAMP8 hearts. Resveratrol also ameliorated the augmentation of pro-apoptotic markers including p53, Bax, caspase 3 activity and apoptotic DNA fragmentation induced by doxorubicin in hearts from aged animals, whereas these reductions were diminished by combined treatment with SIRT1 inhibitors. These data demonstrate that resveratrol ameliorates doxorubicin-induced cardiotoxicity in aged hearts through the restoration of SIRT1 activity to attenuate USP7-related catabolic/pro-apoptotic signalling. AbbreviationsAMPK, AMP-activated protein kinase; DR, doxorubicin + resveratrol; DRE, doxorubicin + resveratrol + EX527; DRS, doxorubicin + resveratrol + sirtinol; DV, doxorubicin and vehicle; EF, ejection fraction; FS, fractional shortening; LVEDD, left ventricle end-diastolic dimension; LVESD, left ventricle end-systolic dimension; SAMP8, senescence-accelerated mice prone 8; SC, saline control; SIRT1, sirtuin 1; TBST, Tris-buffered saline with 0.1% Tween 20; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling.
Key pointsr Cardiac function is impaired and Foxo1/Bim-related apoptotic signalling is up-regulated in senescent heart r Activation of SIRT1 deacetylase activity by resveratrol attenuates the Foxo1/Bim signalling axis in senescent heart Abstract Elevations of cardiomyocyte apoptosis and fibrotic deposition are major characteristics of the ageing heart. Resveratrol, a polyphenol in grapes and red wine, is known to improve insulin resistance and increase mitochondrial biogenesis through the SIRT1-PGC-1α signalling axis. Recent studies attempted to relate SIRT1 activation by resveratrol to the regulation of apoptosis in various disease models of cardiac muscle. In the present study, we tested the hypothesis that long-term (8-month) treatment of resveratrol would activate SIRT1 and improve the cardiac function of senescent mice through suppression of Foxo1-associated pro-apoptotic signalling. Our echocardiographic measurements indicated that the cardiac systolic function measured as fractional shortening and ejection fraction was significantly reduced in aged mice when compared with the young mice. These reductions, however, were not observed in resveratrol-treated hearts. Ageing significantly reduced the deacetylase activity, but not the protein abundance of SIRT1 in the heart. This reduction was accompanied by increased acetylation of the Foxo1 transcription factor and transactivation of its target, pro-apoptotic Bim. Subsequent analyses indicated that pro-apoptotic signalling measured as p53, Bax and apoptotic DNA fragmentation was up-regulated in the heart of aged mice. In contrast, resveratrol restored SIRT1 activity and suppressed elevations of Foxo1 acetylation, Bim and pro-apoptotic signalling in the aged heart. In parallel, resveratrol also attenuated the ageing-induced elevations of fibrotic collagen deposition and markers of oxidative damage including 4HNE and nitrotyrosine. In conclusion, these novel data demonstrate that resveratrol mitigates pro-apoptotic signalling in senescent heart through a deacetylation mechanism of SIRT1 that represses the Foxo1-Bim-associated pro-apoptotic signalling axis.
Non-small cell lung cancer (NSCLC) represents about 85% of the reported cases of lung cancer. Acquired resistance to targeted therapy with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, is not uncommon. It is thus vital to explore novel strategies to restore sensitivity to gefitinib. Provided that microRNAs (miRNAs) negatively regulate their gene targets at the transcriptional level, it is speculated that miRNA mimetics may reduce the expression, activity and signal transduction of EGFR so that sensitization of tumour sites to gefitinib-induced cytotoxicity can be achieved. Indeed, a growing body of evidence has shown that the manipulation of endogenous levels of miRNA not only attenuates the EGFR/PI3K/Akt phosphorylation cascade, but also restores apoptotic cell death in in vitro models of experimentally-induced gefitinib resistance and provoked tumour regression/shrinkage in xenograft models. These data are in concordant with the clinical data showing that the differential expression profiles of miRNA in tumour tissues and blood associate strongly with drug response and overall survival. Furthermore, another line of studies indicate that the chemopreventive effects of a variety of natural compounds may involve miRNAs. The present review aims to discuss the therapeutic capacity of miRNAs in relation to recent discoveries on EGFR-TKI resistance, including chronic drug exposure and mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.