The long-term viscoelastic material properties of monkey peripapillary sclera are altered by exposure to moderate, short-term, chronic IOP elevations and these alterations are present at the onset of CSLT-detected glaucomatous damage to the ONH. Damage to and/or remodeling of the extracellular matrix of these tissues may underlie these changes in scleral material properties.
The causes of mechanical failure of five noncemented porous-coated components were studied. There were two cobalt-chromium alloy and three titanium alloy implants which fractured after 12 to 48 months. The implants included one acetabular component, and one femoral condylar, one patellar and two tibial components. Examination of the fractured surfaces revealed fatigue to be the mechanism of failure in all cases. The porous coating and the processes required for its fabrication had resulted in weakening and reduction of substrate thickness. Additional factors were stress concentration due to limited, localised bone ingrowth, and some features of the design of the implants.
This study evaluated strain in the normal anterior cruciate ligament (ACL) and compared it to four different doubte-strand hamstring tendon reconstructive techniques. Seventeen fresh-frozen knees from 11 cadavers were tested. The strain in the anteromedial and posterolateral bands of the native ACL and their equivalents in four autograft techniques were measured using differential variable reluctance transducers.
The anteromedial band of the intact ACL shortened from 0°-30° of flexion, then lengthened to 120°; the posterolateral band of the intact ACL shortened from 0°-120° of flexion. Following ACL excision, these knees underwent reconstruction with double-strand hamstring tendons with either single tibial and femoral tunnels, single tibial and dual femoral tunnels, dual tibial and single femoral tunnels, or dual tibial and dual femoral tunnels. With the exception of the dual-band, dual-tunnel technique, all of the procedures placed greater strain on the reconstructive tissues than was observed on the native ACL, after approximately 30° of flexion.
These results indicate that dual-band hamstring tendon reconstructions placed with single tibial and femoral tunnels do not address the complexity of the entire ACL. Rather, these procedures appear to only duplicate the effect of the anteromedial band, while perhaps overconstraining the joint as a result of its inability to reproduce the function of the posterolateral band. During rehabilitation following ACL reconstruction, therefore, only from 0°-30° of the graft tissues are not significantly strained. Dual tibial and femoral tunnel techniques should be evaluated further to more closely recreate knee kinematics following ACL reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.