Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells.
Background Coronavirus disease 2019 (COVID-19) is a life-threatening respiratory condition caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was initially detected in China in December 2019. Currently, in Germany over 140,000 cases of COVID-19 are confirmed. Here we report a nosocomial outbreak of SARS-CoV-2 infections in the pediatric dialysis unit of the University Hospital of Münster (UHM). Methods Single-step real-time RT-PCR from nasopharyngeal swaps was used to diagnose the index patient and identify infected contacts. Epidemiological links were analyzed by patient interviews and chart reviews. In addition, each contact was assessed for exposure to the index case and monitored for clinical symptoms. Threshold cycle (Ct) values of all positive test results were compared between symptomatic and asymptomatic cases. Results Forty-eight cases were involved in this nosocomial outbreak. Nine contact cases developed laboratory confirmed COVID-19 infections. Two SARS-CoV-2 positive cases remained clinically asymptomatic. Eleven cases reported flu-like symptoms without positive results. Ct values were significantly lower in cases presenting typical COVID-19 symptoms, suggesting high viral shedding (p =0.007). Conclusion Person-to-person transmission was at the heart of a hospital outbreak of SARS-CoV-2 between healthcare workers (HCWs) and patients in the pediatric dialysis unit at the UHM. Semi quantitative real-time RT-PCR results suggest that individuals with high viral load pose a risk to spread SARS-CoV-2 in the hospital setting. Our epidemiological observation highlights the need to develop strategies to trace and monitor SARS-CoV-2 infected HCWs in order to prevent COVID-19 outbreaks in the hospital setting.
BACKGROUND & AIMS:A better understanding of prognostic factors within the heterogeneous spectrum of pediatric Crohn's disease (CD) should improve patient management and reduce complications. We aimed to identify evidence-based predictors of outcomes with the goal of optimizing individual patient management. METHODS: A survey of 202 experts in pediatric CD identified and prioritized adverse outcomes to be avoided. A systematic review of the literature with meta-analysis, when possible, was performed to identify clinical studies that investigated predictors of these outcomes. Multiple national and international face-to-face meetings were held to draft consensus statements based on the published evidence. RESULTS: Consensus was reached on 27 statements regarding prognostic factors for surgery, complications, chronically active pediatric CD, and hospitalization. Prognostic factors for surgery included CD diagnosis during adolescence, growth impairment, NOD2/CARD15 polymorphisms, disease behavior, and positive anti-Saccharomyces cerevisiae antibody status. Isolated colonic disease was associated with fewer surgeries. Older age at presentation, small bowel disease, serology (anti-Saccharomyces cerevisiae antibody, antiflagellin, and OmpC), NOD2/ CARD15 polymorphisms, perianal disease, and ethnicity were risk factors for penetrating (B3) and/or stenotic disease (B2). Male sex, young age at onset, small bowel disease, more active disease, and diagnostic delay may be associated with growth impairment. Malnutrition and higher disease activity were associated with reduced bone density. CONCLUSIONS: These evidence-based consensus statements offer insight into predictors of poor outcomes in pediatric CD and are valuable when developing treatment algorithms and planning future studies. Targeted longitudinal studies are needed to further characterize prognostic factors in pediatric CD and to evaluate the impact of treatment algorithms tailored to individual patient risk.
Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.