Based on these results, the TRANSIT model is an attractive alternative for modeling drug absorption delay, especially when a LAG model poorly describes the drug absorption phase or is numerically unstable.
This document was developed to enable greater consistency in the practice, application, and documentation of Model‐Informed Drug Discovery and Development (MID3) across the pharmaceutical industry. A collection of “good practice” recommendations are assembled here in order to minimize the heterogeneity in both the quality and content of MID3 implementation and documentation. The three major objectives of this white paper are to: i) inform company decision makers how the strategic integration of MID3 can benefit R&D efficiency; ii) provide MID3 analysts with sufficient material to enhance the planning, rigor, and consistency of the application of MID3; and iii) provide regulatory authorities with substrate to develop MID3 related and/or MID3 enabled guidelines.
This review discusses several issues in the clinical pharmacology of the antitumour agent ifosfamide and its metabolites. Ifosfamide is effective in a large number of malignant diseases. Its use, however, can be accompanied by haematological toxicity, neurotoxicity and nephrotoxicity. Since its development in the middle of the 1960s, most of the extensive metabolism of ifosfamide has been elucidated. Identification of specific isoenzymes responsible for ifosfamide metabolism may lead to an improved efficacy/toxicity ratio by modulation of the metabolic pathways. Whether ifosfamide is specifically transported by erythrocytes and which activated ifosfamide metabolites play a key role in this transport is currently being debated. In most clinical pharmacokinetic studies, the phenomenon of autoinduction has been observed, but the mechanism is not completely understood. Assessment of the pharmacokinetics of ifosfamide and metabolites has long been impaired by the lack of reliable bioanalytical assays. The recent development of improved bioanalytical assays has changed this dramatically, allowing extensive pharmacokinetic assessment, identifying key issues such as population differences in pharmacokinetic parameters, differences in elimination dependent upon route and schedule of administration, implications of the chirality of the drug and interpatient pharmacokinetic variability. The mechanisms of action of cytotoxicity, neurotoxicity, urotoxicity and nephrotoxicity have been pivotal issues in the assessment of the pharmacodynamics of ifosfamide. Correlations between the new insights into ifosfamide metabolism, pharmacokinetics and pharmacodynamics will rationalise the further development of therapeutic drug monitoring and dose individualisation of ifosfamide treatment.
Quantitative and systems pharmacology concepts and tools are the foundation of the model-informed drug development paradigm at Merck for integrating knowledge, enabling decisions, and enhancing submissions. Rigorous prioritization of modeling and simulation activities has enabled key drug development decisions and led to a high return on investment through significant cost avoidance. Critical factors for the successful implementation, examples on impact on decision making with associated return of investment, and drivers for continued success are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.