Low-resource settings are disproportionately burdened by infectious diseases and antimicrobial resistance. Good quality clinical bacteriology through a well functioning reference laboratory network is necessary for effective resistance control, but low-resource settings face infrastructural, technical, and behavioural challenges in the implementation of clinical bacteriology. In this Personal View, we explore what constitutes successful implementation of clinical bacteriology in low-resource settings and describe a framework for implementation that is suitable for general referral hospitals in low-income and middle-income countries with a moderate infrastructure. Most microbiological techniques and equipment are not developed for the specific needs of such settings. Pending the arrival of a new generation diagnostics for these settings, we suggest focus on improving, adapting, and implementing conventional, culture-based techniques. Priorities in low-resource settings include harmonised, quality assured, and tropicalised equipment, consumables, and techniques, and rationalised bacterial identification and testing for antimicrobial resistance. Diagnostics should be integrated into clinical care and patient management; clinically relevant specimens must be appropriately selected and prioritised. Open-access training materials and information management tools should be developed. Also important is the need for onsite validation and field adoption of diagnostics in low-resource settings, with considerable shortening of the time between development and implementation of diagnostics. We argue that the implementation of clinical bacteriology in low-resource settings improves patient management, provides valuable surveillance for local antibiotic treatment guidelines and national policies, and supports containment of antimicrobial resistance and the prevention and control of hospital-acquired infections.
Background Little is known about the natural history of asymptomatic SARS-CoV-2 infection or its contribution to infection transmission. Methods We conducted a prospective study at a quarantine center for COVID-19 in Ho Chi Minh City, Vietnam. We enrolled quarantined people with RT-PCR-confirmed SARS-CoV-2 infection, collecting clinical data, travel and contact history, and saliva at enrolment and daily nasopharyngeal throat swabs (NTS) for RT-PCR testing. We compared the natural history and transmission potential of asymptomatic and symptomatic individuals. Results Between March 10th and April 4th, 2020, 14,000 quarantined people were tested for SARS-CoV-2; 49 were positive. Of these, 30 participated in the study: 13(43%) never had symptoms and 17(57%) were symptomatic. 17(57%) participants acquired their infection outside Vietnam. Compared with symptomatic individuals, asymptomatic people were less likely to have detectable SARS-CoV-2 in NTS samples collected at enrolment (8/13 (62%) vs. 17/17 (100%) P=0.02). SARS-CoV-2 RNA was detected in 20/27 (74%) available saliva; 7/11 (64%) in the asymptomatic and 13/16 (81%) in the symptomatic group (P=0.56). Analysis of the probability of RT-PCR positivity showed asymptomatic participants had faster viral clearance than symptomatic participants (P<0.001 for difference over first 19 days). This difference was most pronounced during the first week of follow-up. Two of the asymptomatic individuals appeared to transmit the infection to up to four contacts. Conclusions Asymptomatic SARS-CoV-2 infection is common and can be detected by analysis of saliva or NTS. NTS viral loads fall faster in asymptomatic individuals, but they appear able to transmit the virus to others.
Extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli (ESBL E. coli) strains are of major concern because few antibiotics remain active against these bacteria. We investigated the association between the fecal relative abundance (RA) of ESBL-producing E. coli (ESBL-RA) and the occurrence of ESBL E. coli urinary tract infections (UTIs). The first stool samples passed after suspicion of UTI from 310 women with subsequently confirmed E. coli UTIs were sampled and tested for ESBL-RA by culture on selective agar. Predictive values of ESBL-RA for ESBL E. coli UTI were analyzed for women who were not exposed to antibiotics when the stool was passed. ESBL E. coli isolates were characterized for ESBL type, phylogroup, relatedness, and virulence factors. The prevalence of ESBL E. coli fecal carriage was 20.3%, with ESBL E. coli UTIs being present in 12.3% of the women. The mean ESBL-RA (95% confidence interval [CI]) was 13-fold higher in women exposed to antibiotics at the time of sampling than in those not exposed (14.3% [range, 5.6% to 36.9%] versus 1.1% [range, 0.32% to 3.6%], respectively; P < 0.001) and 18-fold higher in women with ESBL E. coli UTI than in those with another E. coli UTI (10.0% [range, 0.54% to 100%] versus 0.56% [range, 0.15% to 2.1%[, respectively; P < 0.05). An ESBL-RA of <0.1% was 100% predictive of a non-ESBL E. coli UTI. ESBL type, phylogroup, relatedness, and virulence factors were not found to be associated with ESBL-RA. In conclusion, ESBL-RA was linked to the occurrence of ESBL E. coli UTI in women who were not exposed to antibiotics and who had the same clone of E. coli in urine samples and fecal samples. Especially, a low ESBL-RA appeared to be associated with a low risk of ESBL E. coli infection.
BackgroundIn the last decade, an important scale-up was observed in malaria control interventions. Madagascar entered the process for pre-elimination in 2007. Policy making needs operational indicators, but also indicators about effectiveness and impact of malaria control interventions (MCI). This study is aimed at providing data about malaria infection, morbidity, and mortality, and MCI in Madagascar.MethodsTwo nationwide surveys were simultaneously conducted in 2012–2013 in Madagascar: a study about non-complicated clinical malaria cases in 31 sentinel health facilities, and a cross-sectional survey (CSS) in 62 sites. The CSS encompassed interviews, collection of biological samples and verbal autopsies (VA). Data from CSS were weighted for age, sex, malaria transmission pattern, and population density. VA data were processed with InterVA-4 software.ResultsCSS included 15,746 individuals of all ages. Parasite rate (PR) as measured by rapid diagnostic tests was 3.1%, and was significantly higher in five to 19 year olds, in males, poorer socio-economic status (SES) quintiles and rural areas. Long-lasting insecticidal nets (LLIN) use was 41.7% and was significantly lower in five to 19 year olds, males and wealthier SES quintiles. Proportion of persons covered by indoor residual spraying (IRS) was 66.8% in targeted zones. Proportion of persons using other insecticides than IRS was 22.8%. Coverage of intermittent preventive treatment during pregnancy was 21.5%. Exposure to information, education and communication messages about malaria was significantly higher in wealthier SES for all media but information meetings. The proportion of fever case managements considered as appropriate with regard to malaria was 15.8%. Malaria was attributed as the cause of death in 14.0% of 86 VA, and 50% of these deaths involved persons above the age of five years. The clinical case study included 818 cases of which people above the age of five accounted for 79.7%. In targeted zones, coverage of LLIN and IRS were lower in clinical cases than in general population.ConclusionsThis study provides valuable data for the evaluation of effectiveness and factors affecting MCI. MCI and evaluation surveys should consider the whole population and not only focus on under-fives and pregnant women in pre-elimination or elimination strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/1475-2875-13-465) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.