The ongoing rise of Generative Adversarial Networks is opening the possibility to create highly-realistic, natural looking images in various fields of application. One particular example is the generation of emotional human face images that can be applied to diverse use-cases such as automated avatar generation. However, most conditional approaches to create such emotional faces are addressing categorical emotional states, making smooth transitions between emotions difficult. In this work, we explore the possibilities of label interpolation in order to enhance a network that was trained on categorical emotions with the ability to generate face images that show emotions located in a continuous valence-arousal space.
Robot humor is typically scripted by the human. This work presents a socially-aware robot which generates multimodal jokes for use in real-time human-robot dialogs, including appropriate prosody and non-verbal behaviors. It personalizes the paralinguistic presentation strategy based on socially-aware reinforcement learning, which interprets human social signals and aims to maximize user amusement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.