Short-term changes in plant species number, frequency and composition were studied along an altitudinal gradient crossing four summits from the treeline ecotone to the subnival zone in the South Alps (Dolomites, Italy). Large-scale (summit areas) and small-scale patterns (16 plots of 1 m 2 /summit) were monitored. After 5 years, a re-visitation of the summit areas revealed a considerable increase of species richness at the upper alpine and subnival zone (10% and 9%, respectively) and relatively modest increases at the lower alpine zone and the treeline ecotone (3% and 1%, respectively). At the small scale, the results were partly different, with species richness decreasing at the lower summits and increasing at the higher summits. The changes can most likely be attributed to climate warming effects and to competitive interactions. The main newcomers at the lower three summits were species from the treeline and the lower altitudinal zones. Only at the highest summit, the newcomers came from the alpine species pool. At the treeline ecotone, the abundance of Pinus cembra, of dwarf shrubs and clonal graminoid species increased. Here, displacements of alpine species may be predicted for the near future. At the higher summits, expansions of the established alpine species and further invasions of species from lower altitudes are forecasted.
Tree crowns typically cover the vast majority of the surface area of trees, but they are rarely considered in diversity surveys of epiphytic bryophytes and lichens, especially in temperate Europe. Usually only stems are sampled. We assessed the number of bryophyte and lichen species on stems and in crowns of 80 solitary sycamore maple trees (Acer pseudoplatanus) at six sites in wooded pastures in the northern Alps. The total number of species detected per tree ranged from 13 to 60 for bryophytes, from 25 to 67 for lichens, and from 42 to 104 for bryophytes and lichens considered together. At the tree level, 29 % of bryophyte and 61 % of lichen species were recorded only in the crown. Considering all sampled trees together, only 4 % of bryophyte, compared to 34 % of lichen species, were never recorded on the stem. Five out of 10 red-listed bryophyte species and 29 out of 39 red-listed lichen species were more frequent in crowns. The species richness detected per tree was unexpectedly high, whereas the proportion of exclusive crown species was similar to studies from forest trees. For bryophytes, in contrast to lichens, sampling several stems can give a good estimation of the species present at a site. However, frequency estimates may be highly biased for lichens and bryophytes if crowns are not considered. Our study demonstrates that tree crowns need to be considered in research on these taxa, especially in biodiversity surveys and in conservation tasks involving lichens and to a lesser degree also bryophytes.Keywords Acer pseudoplatanus Á Alps Á Biodiversity Á Epiphytes Á Red-listed species Á Tayloria rudolphiana Communicated by Pradeep Kumar Divakar.
International audience[No abstract available
Context Dead wood is a key habitat for saproxylic species, which are often used as indicators of habitat quality in forests. Understanding how the amount and spatial distribution of dead wood in the landscape affects saproxylic communities is therefore important for maintaining high forest biodiversity. Objectives We investigated effects of the amount and isolation of dead wood on the alpha and beta diversity of four saproxylic species groups, with a focus on how the spatial scale influences results. Methods We inventoried saproxylic beetles, wood-inhabiting fungi, and epixylic bryophytes and lichens on 62 plots in the Sihlwald forest reserve in Switzerland. We used GLMs to relate plot-level species richness to dead wood amount and isolation on spatial scales of 20–200 m radius. Further, we used GDMs to determine how dead wood amount and isolation affected beta diversity. Results A larger amount of dead wood increased beetle richness on all spatial scales, while isolation had no effect. For fungi, bryophytes and lichens this was only true on small spatial scales. On larger scales of our study, dead wood amount had no effect, while greater isolation decreased species richness. Further, we found no strong consistent patterns explaining beta diversity. Conclusions Our multi-taxon study shows that habitat amount and isolation can strongly differ in the spatial scale on which they influence local species richness. To generally support the species richness of different saproxylic groups, dead wood must primarily be available in large amounts but should also be evenly distributed because negative effects of isolation already showed at scales under 100 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.