Theo Rein and colleagues examine the role of FKBP51 in the actions of antidepressants, with a particular focus on pathways of autophagy.
Please see later in the article for the Editors' Summary
Aberrant biochemical processes in the brain frequently go along with subtle shifts of the cellular epigenetic profile that might support the pathogenic progression of psychiatric disorders. Although recent reports have implied the ability of certain antidepressants and mood stabilizers to modulate epigenetic parameters, studies comparing the actions of these compounds under the same conditions are lacking. In this study, we screened amitriptyline (AMI), venlafaxine, citalopram, as well as valproic acid (VPA), carbamazepine, and lamotrigine for their potential actions on global and local epigenetic modifications in rat primary astrocytes. Among all drugs, VPA exposure evoked the strongest global chromatin modifications, including histone H3/H4 hyperacetylation, 2MeH3K9 hypomethylation, and DNA demethylation, as determined by western blot and luminometric methylation analysis, respectively. CpG demethylation occurred independently of DNA methyltransferase (DNMT) suppression. Strikingly, AMI also induced slight cytosine demethylation, paralleled by the reduction in DNMT enzymatic activity, without affecting the global histone acetylation status. Locally, VPA-induced chromatin modifications were reflected at the glutamate transporter (GLT-1) promoter as shown by bisulfite sequencing and acetylated histone H4 chromatin immunoprecipitation analysis. Distinct CpG sites in the distal part of the GLT-1 promoter were demethylated and enriched in acetylated histone H4 in response to VPA. For the first time, we could show that these changes were associated with an enhanced transcription of this astrocyte-specific gene. In contrast, AMI failed to stimulate GLT-1 transcription and to alter promoter methylation levels. In conclusion, VPA and AMI globally exerted chromatin-modulating activities using different mechanisms that divergently precipitated at an astroglial gene locus.
The recently proposed Research Domain Criteria (RDoC) system defines psychopathologies as phenomena of multilevel neurobiological existence and assigns them to 5 behavioural domains characterizing a brain in action. We performed an analysis on this contemporary concept of psychopathologies in respect to a brain phylogeny and biological substrates of psychiatric diseases. We found that the RDoC system uses biological determinism to explain the pathogenesis of distinct psychiatric symptoms and emphasises exploration of endophenotypes but not of complex diseases. Therefore, as a possible framework for experimental studies it allows one to evade a major challenge of translational studies of strict disease-to-model correspondence. The system conforms with the concept of a normality and pathology continuum, therefore, supports basic studies. The units of analysis of the RDoC system appear as a novel matrix for model validation. The general regulation and arousal, positive valence, negative valence, and social interactions behavioural domains of the RDoC system show basic construct, network, and phenomenological homologies between human and experimental animals. The nature and complexity of the cognitive behavioural domain of the RDoC system deserve further clarification. These homologies in the 4 domains justifies the validity, reliably and translatability of animal models appearing as endophenotypes of the negative and positive affect, social interaction and general regulation and arousal systems’ dysfunction.
Because of the biochemical colocalization of the 5-HT 3 receptor and antidepressants within raft-like domains and their antagonistic effects at this ligand-gated ion channel, we investigated the impact of lipid raft integrity for 5-HT 3 receptor function and its modulation by antidepressants. Treatment with methyl-b-cyclodextrine (MbCD) markedly reduced membrane cholesterol levels and caused a more diffuse membrane distribution of the lipid raft marker protein flotillin-1 indicating lipid raft impairment. Both amplitude and charge of serotonin evoked cation currents were diminished following cholesterol depletion by either MbCD or simvastatin (Sim), whereas the functional antagonistic properties of the antidepressants desipramine (DMI) and fluoxetine (Fluox) at the 5-HT 3 receptor were retained. Although both the 5-HT 3 receptor and flotillin-1 were predominantly found in raft-like domains in western blots following sucrose density gradient centrifugation, immunocytochemistry revealed only a coincidental degree of colocalization of these two proteins. These findings and the persistence of the antagonistic effects of DMI and Fluox against 5-HT 3 receptors after lipid raft impairment indicate that their modulatory effects are likely mediated through non-raft 5-HT 3 receptors, which are not sufficiently detected by means of sucrose density gradient centrifugation. In conclusion, lipid raft integrity appears to be important for 5-HT 3 receptor function in general, whereas it is not a prerequisite for the antagonistic properties of antidepressants such as DMI and Fluox at this ligand-gated ion channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.