Natural products discovered from bacteria provide critically needed therapeutic leads for drug discovery, and myxobacteria are an established source for metabolites with unique chemical scaffolds and biological activities. Myxobacterial genomes accommodate an exceptional number and variety of biosynthetic gene clusters (BGCs) which encode for features involved in specialized metabolism. Continued discovery and sequencing of novel myxobacteria from the environment provides BGCs for the genome mining pipeline. Herein, we describe the collection, sequencing, and genome mining of 20 myxobacteria isolated from rhizospheric soil samples collected in North America. Nine isolates where determined to be novel species of myxobacteria including representatives from the generaArchangium,Myxococcus,Nannocystis,Polyangium,Pyxidicoccus,Sorangium, andStigmatella. Growth profiles, biochemical assays, and descriptions are provided for all proposed novel species. We assess the BGC content of all isolates and observe differences between Myxococcia and Polyangiia clusters. Utilizing complete or near complete genome sequences we compare the chromosomal organization of BGCs of related myxobacteria from various genera and suggest spatial proximity of hybrid, modular clusters contributes to the metabolic adaptability of myxobacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.