A comparison between the commonly used absorption spectrophotometry and a more recent approach known as structured laser illumination planar imaging (SLIPI) is presented for the characterization of scattering and absorbing liquids. Water solutions of milk and coffee are, respectively, investigated for 10 different levels of turbidity. For the milk solutions, scattering is the dominant process, while the coffee solutions have a high level of absorption. Measurements of the extinction coefficient are performed at both λ=450 nm and λ=638 nm and the ratio of their values has been extracted. We show that the turbidity limit of valid transmission measurements is reached at an optical depth of OD∼2.4, corresponding here to an extinction coefficient of μe=0.60 mm-1 when using a modern absorption spectrometer having a spatial Fourier filter prior to detection. Above this value, errors are induced due to the contribution of scattered and multiply scattered photons reaching the detector. On the contrary, the SLIPI measurements were found to be very reliable, even for an extinction coefficient three times as high, where μe=1.80 mm-1. This improvement is due to the capability of the technique in efficiently suppressing the contribution from multiple light scattering.
Absorbance measurement in dense media via conventional optical spectroscopy techniques leads to inaccurate results. This is mainly due to multiple scattering phenomena that contribute to the overall light extinction in the interrogated sample. This limitation imposes the use of dilute solutions for absorption spectroscopy. However, depending on the polarity of the solvent used, the absorption spectrum may vary over a given solution. Structured illumination technique offers an alternative to this problem, and provides the ability to calculate in-situ optical properties in dense media. In this paper, we propose two processing methods applied to images acquired by structured laser illumination planar imaging (SLIPI) technique to extract extinction coefficients µ of probed solutions: The first is based on the implementation of principal component analysis (PCA) and the second, on the calculation of Mean Value. In practice, two kinds of studies were carried out: one quantitative set of measurements within chlorophyll liquid solutions and a second set with concentrated coffee solutions, with controlled proportion and concentrations for each sample. These two proposed analytical techniques are advantageous because they are very easy to implement and provide a much simpler alternative to the previous one. Both methods offer satisfactory results, similar to those obtained with the original method which is based on 1D Fourier transform.
The aging process of the insulating oils of an electrical transformer is initiated as soon as the transformer is put into service. The quality of these oils must therefore be rigorously evaluated to have reliable and exploitable data for decision‐making. In general, the decision is to continue monitoring, reclaiming/regenerating, or replacing the oil in extreme cases. Thus, early diagnosis of power transformer oils helps prevent potential breakdowns that could considerably impact the electrical energy transmission and distribution network. This research used an imaging technique called SLIPI (Structured Laser Illumination Planar Imaging) to accurately determine the extinction coefficient in different samples of optically dense biodegradable oils (natural and synthetic esters). The variation in the extinction coefficient as a function of the aging of these biodegradable oils under test has been investigated. The results indicate that the SLIPI is reliable as a diagnostic tool for biodegradable oils in power transformers. This technique could therefore be an alternative solution to the conventional monitoring methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.