It is known that the spin structure on a Riemannian manifold can be extended to noncommutative geometry using the notion of a spectral triple. For finite geometries, the corresponding finite spectral triples are completely described in terms of matrices and classified using diagrams. When tensorized with the ordinary space-time geometry, finite spectral triples give rise to Yang-Mills theories with spontaneous symmetry breaking, whose characteristic features are given within the diagrammatic approach: vertices of the diagram correspond to gauge multiplets of chiral fermions and links to Yukawa couplings. -92: 11.15 Gauge field theories MSC-91: 81T13 Yang-Mills and other gauge theories
PACS
Group field theories are particular quantum field theories defined on D copies of a group which reproduce spin foam amplitudes on a space-time of dimension D. In these lecture notes, we present the general construction of group field theories, merging ideas from tensor models and loop quantum gravity. This lecture is organized as follows. In the first section, we present basic aspects of quantum field theory and matrix models. The second section is devoted to general aspects of tensor models and group field theory and in the last section we examine properties of the group field formulation of BF theory and the EPRL model. We conclude with a few possible research topics, like the construction of a continuum limit based on the double scaling limit or the relation to loop quantum gravity through Schwinger-Dyson equations.
Using standard field theoretical techniques, we survey pure Yang-Mills theory on the noncommutative torus, including Feynman rules and BRS symmetry. Although in general free of any infrared singularity, the theory is ultraviolet divergent. Because of an invariant regularization scheme, this theory turns out to be renormalizable and the detailed computation of the one-loop counterterms is given, leading to an asymptotically free theory. Besides, it turns out that nonplanar diagrams are overall convergent when θ is irrational.
We introduce a linearized version of group field theory. It can be viewed either as a group field theory over the additive group of a vector space or as an asymptotic expansion of any group field theory around the unit group element. We prove exact power counting theorems for any graph of such models. For linearized colored models the power counting of any amplitude is further computed in term of the homology of the graph. An exact power counting theorem is also established for a particular class of graphs of the nonlinearized models, which satisfy a planarity condition. Examples and connections with previous results are discussed.Pacs numbers: 04.60.-m, 04.60.Pp
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.