The population of patients with congenital heart disease (CHD) is continuously increasing with more and more patients reaching adulthood. A significant portion of these young adults will suffer from arrhythmias due to the underlying congenital heart defect itself or as a sequela of interventional or surgical treatment. The medical community will encounter an increasing challenge as even most of the individuals with complex congenital heart defects nowadays become young adults. Within the past 20 years, management of patients with arrhythmias has gained remarkable progress including pharmacological treatment, catheter ablation, and device therapy. Catheter ablation in patients with CHD has paralleled the advances of this technology in pediatric and adult patients with structurally normal hearts. Growing experience and introduction of new techniques like the 3D mapping systems into clinical practice have been particularly beneficial for this growing population of patients with abnormal cardiac anatomy and physiology. Finally, device therapies allowing maintanence of chronotropic competence and AV conduction, improving haemodynamics by cardiac resynchronization, and preventing sudden death are increasingly used. For pharmacological therapy, ablation procedures, and device therapy decision making requires a deep understanding of the individual pathological anatomy and physiology as well as detailed knowledge on natural history and long-term prognosis of our patients. Composing expert opinions from cardiology and paediatric cardiology as well as from non-invasive and invasive electrophysiology this position paper was designed to state the art in management of young individuals with congenital heart defects and arrhythmias.
Cryoablation of SVT substrates in pediatric patients was associated with a lower success rate compared to RF catheter ablation. Cryomapping decreased the number of permanent lesions but did not predict cryoablation outcome in all tachycardia substrates.
Background-We sought to evaluate tissue reactions within and at the surface of devices for interventional therapy of septal defects and to identify antigen characteristics of neotissues. Methods and Results-Atrial or ventricular septal defect-occlusion devices (Amplatzer, nϭ7; Cardioseal/Starflex, nϭ3) were processed using a uniform protocol after surgical removal from humans (implantation time, 5 days to 4 years). Devices were fixed in formalin and embedded in methylmethacrylate. Serial sections were obtained by sectioning with a diamond cutter and grinding, thus saving the metal/tissue interface for histologic evaluation.Immunohistochemical staining was performed using conventional protocols. Superficial endothelial cells stained positive for von Willebrand factor. Within the newly formed tissues, fibroblast-like cells were identified with a time-dependent expression of smooth muscle cell maturation markers (smooth muscle actin, smooth muscle myosin, h-caldesmon, and desmin) beside extracellular matrix components. Neovascularization of the newly formed tissues was demonstrated with the typical immunohistochemical pattern of capillaries and small vessels. Inflammatory cells could be identified as macrophages (CD68ϩ) and both T-type and B-type lymphocytes (CD3ϩ, CD79ϩ). Conclusions-This is the first presentation of results from serial immunohistochemical staining of a collection of explanted human septal-occlusion devices. A time-dependent maturation pattern of the fibroblast-like cells in the neotissues around the implants could be described. Neoendothelialization was seen in all specimens with implantation times of 10 weeks or more. The time course of neoendothelialization, as seen in our study, further supports the clinical practice of anticoagulant or antiplatelet therapy for 6 months after implantation. This time interval should be sufficient to prevent thromboembolic events due to thrombus formation at the foreign surface of cardiovascular implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.