Layered double hydroxides (LDHs) are layered ion exchangers, with a large surface-charge density, which react easily with organic anions. Various types of organics are rapidly substituted in the interlayer space of inorganic precursor LDHs. ZnAl-LDHs were intercalated with 1- to 19-carbon monocarboxylic acid anions by anion exchange of NO3-saturated LDH precursor phases in order to study the dependence of exchange reactions on synthesis parameters (temperature, pH, and interlayer anion). The carboxylic acid anion-LDHs synthesized were characterized using X-ray diffraction, infrared spectroscopy, thermal analysis, scanning electron microscopy, chemical analysis, and N2 adsorption. Carboxylic anion quantities in excess of the LDH anion exchange capacity easily replaced exchangeable nitrate anions at moderate pH. The intercalated LDH interlayer space depended on the alkyl chain length and orientation (inclination angle) of thecarboxylic-acid anion. Thelatticeparameter c0 ranged from 3.4 to 13.5 nm, but the a0 lattice parameter remained constant at 0.31 nm. Crystallographic analyses indicated a monomolecular arrangement of intercalated short-chain fatty-acid anions. At pH < 7, intercalated long-chain carboxylates showed a preferred bimolecular interlayer orientation. Carboxylic-acid anion exchange with LDHs at pH 7 resulted in the formation of two different sets of basal spacings, which indicated the coexistence of LDHs intercalated with monomolecular and bimolecular arrangements of interlayer carboxylic compounds.Thermal treatment of the carboxylic acid anion-intercalated LDHs indicated stability up to ~140ºC. The release of interlayer water led to distortion of the crystallographic units and resulted in smaller basal spacings without collapse of the layered structure. Heat treatment re-oriented alkyl-chain carbon carboxylates (with >10 carbons) to a more upright interlayer position.
As a consequence of intensive mining of the western Erzgebirge since medieval times, floodplain soils of the Mulde river contain large concentrations of arsenic (As) (>50 mg kg −1 ). Arsenic in soil is often bound to poorly crystalline Fe and Mn (hydr)oxides, which may dissolve under reducing conditions. Part of the As may also exist in primary minerals, predominately sulphides, or in secondary minerals formed upon weathering. In order to better understand the impact of seasonal flooding, we surveyed As-bearing mineral phases, especially of iron (Fe) (hydr)oxides. Because Fe (hydr)oxides are clay-sized, soil samples were fractionated into six particlesize fractions. The fractions were digested with aqua regia for determination of total element concentrations, extracted with hydroxylammonium chloride (NH 3 OHCl; selective for Mn (hydr)oxides and NH 4 oxalate), and analysed by X-ray diffraction and scanning electron microscopy. The largely similar distribution of As and lead (Pb) suggested the potential co-existence of the two elements in primary or secondary mineral phases. However, neither As-Pb minerals nor any other As mineral were detected. Association with Mn oxides was negligible. The predominant As-bearing phases were poorly crystalline Fe (hydr)oxides, which also incorporated large amounts of Pb and were affected by redox dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.