[1] The collapse of the Maya civilization during the ninth century A.D. is a major conundrum in the history of mankind. This civilization reached a spectacular peak but then almost completely collapsed in the space of a few decades. While numerous explanations have been put forth to explain this collapse, in recent years, drought has gained favor. This is because water resources were a key for the Maya, especially to ensure their survival during the lengthy dry season that occurs where they lived. Natural drought is a known, recurring feature of this region, as evidenced by observational data, reconstructions of past times, and global climate model output. Results from simulations with a regional climate model demonstrate that deforestation by the Maya also likely induced warmer, drier, drought-like conditions. It is therefore hypothesized that the drought conditions devastating the Maya resulted from a combination of natural variability and human activities. Neither the natural drought or the human-induced effects alone were sufficient to cause the collapse, but the combination created a situation the Maya could not recover from. These results may have sobering implications for the present and future state of climate and water resources in Mesoamerica as ongoing massive deforestation is again occurring.
This study details two unique methods to quantify cloud-immersion statistics for tropical montane cloud forests (TMCFs). The first technique uses a new algorithm for determining cloud-base height using Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products, and the second method uses numerical atmospheric simulation along with geostationary satellite data. Cloud-immersion statistics are determined using MODIS data for March 2003 over the study region consisting of Costa Rica, southern Nicaragua, and northern Panama. Comparison with known locations of cloud forests in northern Costa Rica shows that the MODIS-derived cloud-immersion maps successfully identify known cloud-forest locations in the United Nations Environment Programme (UNEP) World Conservation Monitoring Centre (WCMC) database. Large connected regions of cloud immersion are observed in regions in which the trade wind flow is directly impinging upon the mountain slopes; in areas in which the flow is parallel to the slopes, a fractured spatial distribution of TMCFs is observed. Comparisons of the MODIS-derived cloud-immersion map with the model output show that the MODIS product successfully captures the important cloudimmersion patterns in the Monteverde region of Costa Rica. The areal extent of cloud immersion is at a maximum during morning hours and at a minimum during the afternoon, before increasing again in the evening. Cloud-immersion frequencies generally increase with increasing elevation and tend to be higher on the Caribbean Sea side of the mountains. This study shows that the MODIS data may be used successfully to map the biogeography of cloud forests and to quantify cloud immersion over cloud-forest locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.