Summary
FGF21 contributes to the metabolic response to dietary protein restriction, and prior data implicate GCN2 as the amino acid sensor linking protein restriction to FGF21 induction. Here we demonstrate the persistent and essential role of FGF21 in the metabolic response to protein restriction. We show that FGF21-KO mice are fully resistant to low protein (LP)-induced changes in food intake, energy expenditure (EE), body weight gain and metabolic gene expression for 6 months. GCN2-KO mice recapitulate this phenotype, but LP-induced effects on food intake, EE, and body weight subsequently begin to appear after 14 days on diet. We show that this delayed emergence of LP-induced metabolic effects in GCN2-KO mice coincides with a delayed but progressive increase of hepatic FGF21 expression and blood FGF21 concentrations over time. These data indicate that FGF21 is essential for the metabolic response to protein restriction, but that GCN2 is only transiently required for LP-induced FGF21.
Highlights d Mice adaptively alter metabolism and food choice during protein restriction d The liver hormone FGF21 is robustly increased by protein restriction d Metabolic responses to protein restriction require FGF21 signaling in the brain d Brain FGF21 also mediates adaptive changes in macronutrient selection
ObjectiveIncreased hepatic expression of dipeptidyl peptidase 4 (DPP4) is associated with non-alcoholic fatty liver disease (NAFLD). Whether this is causative for the development of NAFLD is not yet clarified. Here we investigate the effect of hepatic DPP4 overexpression on the development of liver steatosis in a mouse model of diet-induced obesity.MethodsPlasma DPP4 activity of subjects with or without NAFLD was analyzed. Wild-type (WT) and liver-specific Dpp4 transgenic mice (Dpp4-Liv-Tg) were fed a high-fat diet and characterized for body weight, body composition, hepatic fat content and insulin sensitivity. In vitro experiments on HepG2 cells and primary mouse hepatocytes were conducted to validate cell autonomous effects of DPP4 on lipid storage and insulin sensitivity.ResultsSubjects suffering from insulin resistance and NAFLD show an increased plasma DPP4 activity when compared to healthy controls. Analysis of Dpp4-Liv-Tg mice revealed elevated systemic DPP4 activity and diminished active GLP-1 levels. They furthermore show increased body weight, fat mass, adipose tissue inflammation, hepatic steatosis, liver damage and hypercholesterolemia. These effects were accompanied by increased expression of PPARγ and CD36 as well as severe insulin resistance in the liver. In agreement, treatment of HepG2 cells and primary hepatocytes with physiological concentrations of DPP4 resulted in impaired insulin sensitivity independent of lipid content.ConclusionsOur results give evidence that elevated expression of DPP4 in the liver promotes NAFLD and insulin resistance. This is linked to reduced levels of active GLP-1, but also to auto- and paracrine effects of DPP4 on hepatic insulin signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.