Introduction: There is paucity in the research on transfer validity of arthroscopic simulator training. The aim of this article is to determine whether skills derived from arthroscopic simulation are transferrable to the operating theatre and retained over time.
Methods: A systematic review with rigorous criteria to identify the highest level of evidence available was carried out. The studies were critically appraised with narrative data synthesis.
Results: Twenty-one studies on arthroscopic simulation were identified. Only two studies were randomised controlled trials. The first article demonstrated improved performance of basic knee arthroscopic tasks following a fixed period of training. The second article showed improved performance of arthroscopic tasks and no deterioration in the levels of skills following a period of six months. In addition, the two studies succeeded in demonstrating the importance of 3D motion analysis using computer simulators in the assessment of technical skills. Components of evaluation such as time to task completion, distance travelled by instruments and incidence of instruments collisions were associated with the highest validity and reliability of assessment. This systematic review highlighted the limitations of these two randomised studies.
Discussion: Evidence from the two trials suggests that knee arthroscopy simulator training can result in improved performance. This review helped highlight the contribution of the two studies in terms of internal validity and consistency of using arthroscopic skills training. Further level I studies are however required to demonstrate the evidence for transfer and predictive validity of computer simulation as a training instrument.
This paper highlights the 3 locations where the Exeter stem may fail and estimates a rate of 0.262% for stem fractures due to the constant use of the Exeter stem throughout the career of the senior surgeon.
Bodybuilding is a high-risk sport for distal triceps tendon ruptures. Management, especially in high-demanding athletes, is operative with suture anchor refixation technique being frequently used. However, the rate of rerupture is high due to underlying poor tendon quality. Thus, additional augmentation could be useful. This case report presents a reconstruction technique for a complete traumatic distal triceps tendon rupture in a bodybuilder with postoperative biomechanical assessment. A 28-year-old male professional bodybuilder was treated with a synthetic augmented suture anchor reconstruction for a complete triceps tendon rupture of his right dominant elbow. Postoperative biomechanical assessment included isokinetic elbow strength and endurance testing by using multiple angular velocities to simulate the “off-season” and “precompetition” phases of training. Eighteen months postoperatively and after full return to training, the biomechanical assessment indicated that the strength and endurance of the operated elbow joint was fully restored with even higher ratings compared to the contralateral healthy arm. The described reconstruction technique can be considered as an advisable option in high-performance athletes with underlying poor tendon quality due to high tensile strength and lack of donor site morbidity, thus enabling them to restore preinjury status and achieve safe return to sports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.