The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.
BackgroundRecent genome-wide association studies have identified genetic loci that jointly make a considerable contribution to risk of developing Alzheimer’s disease (AD). Because neuropathological features of AD can be present several decades before disease onset, we investigated whether effects of polygenic risk are detectable by neuroimaging in young adults. We hypothesized that higher polygenic risk scores (PRSs) for AD would be associated with reduced volume of the hippocampus and other limbic and paralimbic areas. We further hypothesized that AD PRSs would affect the microstructure of fiber tracts connecting the hippocampus with other brain areas.MethodsWe analyzed the association between AD PRSs and brain imaging parameters using T1-weighted structural (n = 272) and diffusion-weighted scans (n = 197).ResultsWe found a significant association between AD PRSs and left hippocampal volume, with higher risk associated with lower left hippocampal volume (p = .001). This effect remained when the APOE gene was excluded (p = .031), suggesting that the relationship between hippocampal volume and AD is the result of multiple genetic factors and not exclusively variability in the APOE gene. The diffusion tensor imaging analysis revealed that fractional anisotropy of the right cingulum was inversely correlated with AD PRSs (p = .009). We thus show that polygenic effects of AD risk variants on brain structure can already be detected in young adults.ConclusionsThis finding paves the way for further investigation of the effects of AD risk variants and may become useful for efforts to combine genotypic and phenotypic data for risk prediction and to enrich future prevention trials of AD.
We studied resting-state oscillatory connectivity using magnetoencephalography in healthy young humans (N = 183) genotyped for APOE-ɛ4, the greatest genetic risk for Alzheimer’s disease (AD). Connectivity across frequencies, but most prevalent in alpha/beta, was increased in APOE-ɛ4 in a set of mostly right-hemisphere connections, including lateral parietal and precuneus regions of the Default Mode Network. Similar regions also demonstrated hyperactivity, but only in gamma (40–160 Hz). In a separate study of AD patients, hypoconnectivity was seen in an extended bilateral network that partially overlapped with the hyperconnected regions seen in young APOE-ɛ4 carriers. Using machine-learning, AD patients could be distinguished from elderly controls with reasonable sensitivity and specificity, while young APOE-e4 carriers could also be distinguished from their controls with above chance performance. These results support theories of initial hyperconnectivity driving eventual profound disconnection in AD and suggest that this is present decades before the onset of AD symptomology.
A functional variant of the catechol-O-methyltransferase (COMT) gene [val158met (rs4680)] is frequently implicated in decision-making and higher cognitive functions. It may achieve its effects by modulating dopaminerelated decision-making and reward-guided behaviour. Here we demonstrate that individuals with the met/met polymorphism have greater responsiveness to reward than carriers of the val allele and that this correlates with risk-seeking behaviour. We assessed performance on a reward responsiveness task and the Balloon analogue risk task, which measure how participants (N = 70, western European, university and postgraduate students) respond to reward and take risks in the presence of available reward. Individuals with the met/met genotype (n = 19) showed significantly higher reward responsiveness, F 2,64 = 4.02, P = 0.02, and reward-seeking behaviour, F (2,68) = 4.52, P = 0.01, than did either val/met (n = 25) or val/val (n = 26) carriers. These results highlight a scenario in which genotype-dependent reward responsiveness shapes reward-seeking, therefore suggesting a novel framework by which COMT may modulate behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.