In 1987, David Cairns proposed that a gradient of colony-based measures on seabirds could be used to assess food supply in the ocean. Measures closely tied to the ocean, such as foraging trip duration, would be sensitive to small declines in food supply while measures more closely tied with the nest site, such as reproductive success, would be sensitive to large declines in food supply. The continual refinement of tracking devices holds the potential to clearly link variables measured via seabirds to food supply, possibly extending Cairns' hypothesis. Here, we review the various tests of Cairns' hypothesis, and demonstrate that those tests have had variable success, partly because of the complex and nonlinear relationships between food supply and colony-based measures. We summarize the metrics available from biologgers and argue that such devices can provide a more direct proxy of food supply. We conclude that Cairns' hypothesis can be extended to biologger-derived parameters and that seabird behavior can be used as an early warning signal for declining food supply.
Sympatric species must sufficiently differentiate aspects of their ecological niche to alleviate complete interspecific competition and stably coexist within the same area. Seabirds provide a unique opportunity to understand patterns of niche segregation among coexisting species because they form large multi-species colonies of breeding aggregations with seemingly overlapping diets and foraging areas. Recent biologging tools have revealed that colonial seabirds can differentiate components of their foraging strategies. Specifically, small, diving birds with high wing-loading may have small foraging radii compared with larger or non-diving birds. In the Gulf of St-Lawrence in Canada, we investigated whether and how niche differentiation occurs in four incubating seabird species breeding sympatrically using GPS-tracking and direct field observations of prey items carried by adults to chicks: the Atlantic puffin (Fratercula arctica), razorbill (Alca torda), common murre (Uria aalge), and black-legged kittiwake (Rissa tridactyla). Although there was overlap at foraging hotspots, all species differentiated in either diet (prey species, size and number) or foraging range. Whereas puffins and razorbills consumed multiple smaller prey items that were readily available closer to the colony, murres selected larger more diverse prey that were accessible due to their deeper diving capability. Kittiwakes compensated for their surface foraging by having a large foraging range, including foraging largely at a specific distant hotspot. These foraging habitat specialisations may alleviate high interspecific competition allowing for their coexistence, providing insight on multispecies colonial living.
The Canadian Arctic hosts millions of marine birds annually, many of which aggregate in large numbers at well-defined sites at predictable times of the year. Marine habitats in this region will be under increasing threats from anthropogenic activities, largely facilitated by climate change and long-term trends of reduced sea ice extent and thickness. In this review, we update previous efforts to delineate the most important habitats for marine birds in Arctic Canada, using the most current population estimates for Canada, as well as recent information from shipboard surveys and telemetry studies. We identify 349 160 km2 of key habitat, more than doubling earlier suggestions for key habitat extent. As of 2018, 1% of these habitats fall within the boundaries of legislated protected areas. New marine conservation areas currently being finalized in the Canadian Arctic will only increase the proportion protected to 13%.
The degree to which individuals adjust foraging behavior in response to environmental variability can impact foraging success, leading to downstream impacts on fitness and population dynamics. We examined the foraging flexibility, average daily energy expenditure, and foraging success of an ice-associated Arctic seabird, the thickbilled murre (Uria lomvia) in response to broad-scale environmental conditions at two different-sized, low Arctic colonies located <300 km apart. First, we compared foraging behavior (measured via GPS units), average daily energy expenditure (estimated from GPS derived activity budgets), and foraging success (nutritional state measured via nutritional biomarkers pre-and post-GPS deployment) of murres at two colonies, which differ greatly in size: 30,000 pairs breed on Coats Island, Nunavut, and 400,000 pairs breed on Digges Island, Nunavut. Second, we tested whether colony size within the same marine ecosystem altered foraging behavior in response to broad-scale environmental variability. Third, we tested whether environmentally induced foraging flexibility influenced the foraging success of murres. Murres at the larger colony foraged farther and longer but made fewer trips, resulting in a lower nutritional state and lower foraging success compared to birds at the smaller colony. Foraging behavior and foraging success varied in response to environmental variation, with murres at both colonies making longer, more distant foraging trips in high ice regimes during incubation, suggesting flexibility in responding to environmental variability. However, only birds at the larger colony showed this same flexibility during chick rearing. Foraging success at both colonies was higher during high ice regimes, suggesting greater prey availability. Overall, murres from the larger colony exhibited lower foraging success, and their foraging behavior showed stronger responses to changes in broad-scale conditions such as sea ice regime. Taken together, this suggests that larger Arctic seabird colonies have higher behavioral and demographic sensitivity to environmental change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.