Entropy, under a variety of names, has long been used as a measure of diversity in ecology, as well as in genetics, economics and other fields. There is a spectrum of viewpoints on diversity, indexed by a real parameter q giving greater or lesser importance to rare species. Leinster and Cobbold (2012) proposed a one-parameter family of diversity measures taking into account both this variation and the varying similarities between species. Because of this latter feature, diversity is not maximized by the uniform distribution on species. So it is natural to ask: which distributions maximize diversity, and what is its maximum value? In principle, both answers depend on q, but our main theorem is that neither does. Thus, there is a single distribution that maximizes diversity from all viewpoints simultaneously, and any list of species has an unambiguous maximum diversity value. Furthermore, the maximizing distribution(s) can be computed in finite time, and any distribution maximizing diversity from some particular viewpoint q > 0 actually maximizes diversity for all q. Although we phrase our results in ecological terms, they apply very widely, with applications in graph theory and metric geometry.
The magnitude of a graph is one of a family of cardinality-like invariants extending across mathematics; it is a cousin to Euler characteristic and geometric measure. Among its cardinality-like properties are multiplicativity with respect to cartesian product and an inclusion-exclusion formula for the magnitude of a union. Formally, the magnitude of a graph is both a rational function over Q and a power series over Z. It shares features with one of the most important of all graph invariants, the Tutte polynomial; for instance, magnitude is invariant under Whitney twists when the points of identification are adjacent. Nevertheless, the magnitude of a graph is not determined by its Tutte polynomial, nor even by its cycle matroid, and it therefore carries information that they do not.
Magnitude is a numerical isometric invariant of metric spaces, whose definition arises from a precise analogy between categories and metric spaces. Despite this exotic provenance, magnitude turns out to encode many invariants from integral geometry and geometric measure theory, including volume, capacity, dimension, and intrinsic volumes. This paper gives an overview of the theory of magnitude, from its category-theoretic genesis to its connections with these geometric quantities. Some new results are proved, including a geometric formula for the magnitude of a convex body in ℓ n 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.