Mucopolysaccharidoses (MPSs) are lysosomal storage diseases caused by a deficit in the enzymes needed for glycosaminoglycan (GAG) degradation. Enzyme replacement therapy with recombinant human α-l-iduronidase successfully reduces lysosomal storage in canines and humans with iduronidase-deficient MPS I, but therapy usually also induces antibodies specific for the recombinant enzyme that could reduce its efficacy. To understand the potential impact of α-l-iduronidase-specific antibodies, we studied whether inducing antigen-specific immune tolerance to iduronidase could improve the effectiveness of recombinant iduronidase treatment in canines. A total of 24 canines with MPS I were either tolerized to iduronidase or left nontolerant. All canines received i.v. recombinant iduronidase at the FDA-approved human dose or a higher dose for 9-44 weeks. Nontolerized canines developed iduronidase-specific antibodies that proportionally reduced in vitro iduronidase uptake. Immune-tolerized canines achieved increased tissue enzyme levels at either dose in most nonreticular tissues and a greater reduction in tissue GAG levels, lysosomal pathology, and urinary GAG excretion. Tolerized MPS I dogs treated with the higher dose received some further benefit in the reduction of GAGs in tissues, urine, and the heart valve. Therefore, immune tolerance to iduronidase improved the efficacy of enzyme replacement therapy with recombinant iduronidase in canine MPS I and could potentially improve outcomes in patients with MPS I and other lysosomal storage diseases.
Intrathecal delivery methods have been used for many decades to treat a broad range of central nervous system disorders. A literature review demonstrated that intracerebroventricular route is an established and well-tolerated method for prolonged central nervous system drug delivery in pediatric and adult populations. Intracerebroventricular devices were present in patients from one to 7156 days. The number of punctures per device ranged from 2 to 280. Noninfectious complication rates per patient (range, 1.0% to 33.0%) were similar to infectious complication rates (0.0% to 27.0%). Clinician experience and training and the use of strict aseptic techniques have been shown to reduce the frequency of complications.
Immune responses can interfere with the effective use of therapeutic proteins to treat genetic deficiencies and have been challenging to manage. To address this problem, we adapted and studied methods of immune tolerance used in canine organ transplantation research to soluble protein therapeutics. A tolerization regimen was developed that prevents a strong antibody response to the enzyme ␣-L-iduronidase during enzyme replacement therapy of a canine model of the lysosomal storage disorder mucopolysaccharidosis I. The tolerizing regimen consists of a limited 60-day course of cyclosporin A and azathioprine combined with weekly i.v. infusions of low-dose recombinant human ␣-L-iduronidase. The canines tolerized with this regimen maintain a reduced immune response for up to 6 months despite weekly therapeutic doses of enzyme in the absence of immunosuppressive drugs. Successful tolerization depended on high plasma levels of cyclosporin A combined with azathioprine. In addition, the induction of tolerance may require mannose 6-phosphate receptormediated uptake because ␣-L-iduronidase and ␣-glucosidase induced tolerance with the drug regimen whereas ovalbumin and dephosphorylated ␣-L-iduronidase did not. This tolerization method should be applicable to the treatment of other lysosomal storage disorders and provides a strategy to consider for other nontoleragenic therapeutic proteins and autoimmune diseases.
Abstract. Epizootic hemorrhagic disease virus (EHDV) is a significant pathogen of wild and sometimes domestic ungulates worldwide. Rapid and reliable methods for virus detection and identification play an essential part in the control of epizootic hemorrhagic disease (EHD). In the present study, a 1-step real-time polymerase chain reaction (PCR) group-specific assay was developed. The assay detects genome segment 5 (NS1) from all of the 8 serotypes of EHDV. Assay sensitivity was evaluated relative to a conventional gelbased nested PCR using cell culture-derived virus and diagnostic samples from clinically affected white-tailed deer (Odocoileus virginianus). The assay reliably amplified the NS1 gene from any of the EHDV strains tested, including isolates from each of the 8 EHDV serotypes. No cross-reactions were detected when all 24 serotypes of Bluetongue virus, a closely related member of the genus Orbivirus, were tested. A panel of 76 known EHDVpositive clinical samples was used to compare the performance of the assay relative to a previously reported real-time PCR assay. Results indicated that there was no statistically significant difference between the threshold cycle values obtained with both assays. A collection of 178 diagnostic samples submitted for EHD diagnosis was also used for test evaluation. The assay could be applied for rapid detection of EHDV in clinical samples from susceptible ruminants during an outbreak of the disease. In addition, this PCR assay has the benefits of being reliable and simple and could provide a valuable tool for studying the epidemiology of EHDV infection in susceptible ruminants by facilitating the detection of EHDV, regardless of the serotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.