ObjectivesGiant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are overlapping autoinflammatory diseases affecting people over 50 years. The diseases are treated with immunosuppressive drugs such as prednisolone, methotrexate, leflunomide and tocilizumab. In this study, we assessed the immunogenicity and safety of SARS-CoV-2 vaccinations in these diseases (based on humoral and cellular immunity).MethodsPatients (n=45 GCA, n=33 PMR) visited the outpatient clinic twice: pre-vaccination and 4 weeks after the second dose (BNT162b2 or ChAdOx1 vaccine). Patients with previous SARS-CoV-2 infection were excluded. In both pre-vaccination and post-vaccination samples, anti-Spike antibody concentrations were assessed and compared with age-, sex- and vaccine-matched control groups (n=98). In addition, the frequency of SARS-CoV-2 Spike-specific T-cells was assessed by IFN-γ ELIspot assay, and side effects and disease activity were recorded.ResultsGCA/PMR patients did not have reduced antibody concentrations compared with controls. However, linear regression analysis revealed a significant association of methotrexate and >10 mg/day prednisolone use with lower antibody concentrations in GCA/PMR patients. Evidence of cellular immunity, as assessed by ELIspot assay, was found in 67% of GCA/PMR patients. Patients using >10 mg/day prednisolone had reduced cellular immunity. Importantly, vaccination did not lead to significant side effects or changes in disease activity.ConclusionsSARS-CoV-2 vaccination was safe for GCA/PMR patients and immunogenicity was comparable to other older individuals. However, patients using methotrexate and particularly >10 mg/day prednisolone did show lower vaccine responses, which corroborates findings in other autoinflammatory patient populations. These patients may therefore be at higher risk of (potentially even severe) breakthrough SARS-CoV-2 infection.
Forming 7000-series aluminum alloys under elevated temperatures is particularly attractive due to their increased formability. To enable process design by finite element simulation for hot forming, strain-based criteria, such as temperature-dependent forming limit diagrams (TFLD), can be consulted to assess forming feasibility. This work numerically investigates the extent to which in-plane experimental concepts with partial inductive heating are suitable for detecting discrete failure points in TFLD. In particular, an alternative to the currently widely used thickness-reduced specimen geometries was created for cruciform specimens under biaxial tension. First, the temperature-dependent and strain-rate-dependent flow behavior was investigated for AA7075 under uniaxial tension. A heat source model for partial inductive heating was inversely parameterized based on heating experiments. Subsequently, the test procedures were simulated with different specimen geometries under discrete strain conditions. Different concepts were discussed for deriving a suitable specimen shape for the biaxial tension case, and the influence of different notch and slot forms were shown. The simulations showed that partial inductive heating was suitable to induce failure situations, thus creating TFLDs. For the biaxial tension case, a sufficiently large temperature gradient was required to use cruciform specimens without thickness reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.