The interaction of cobalt(II) tetraphenylporphyrin (CoTPP) and cobalt(II) tetrakis-(3,5-di-tert-butylphenyl)porphyrin (CoTTBPP) with a Ag(111) surface has been investigated with photoelectron spectroscopy (XPS/UPS). It is demonstrated that these adsorbed metal complexes are excellent model systems for studying the
electronic interaction between a coordinated metal ion and a metal surface. The photoelectron spectra and
work function data provide evidence that the electronic interaction between the cobalt ion and the silver
surface results in a transfer of electron density from the surface to the ion. The presence of an additional
electronic state located ∼1 eV above the singly occupied molecular orbital (SOMO) of the metalloporphyrins
is consistent with a molecular orbital (MO) model of the Co−Ag interaction as is the fact that the energetic
position of this state depends on the distance between the Co ion and the Ag surface. The adsorbate-induced
work function changes for the saturated monolayers amount to −0.72 eV for CoTPP and −0.91 eV for
CoTTBPP. For comparison, we also present data of monolayer films of tetraphenylporphyrin and zinc(II)
tetraphenylporphyrin.
We demonstrate that well-defined monolayers of a metal complex on a surface can be prepared by direct vapor deposition of the metal atoms on monolayers of the ligand. In particular, ordered monolayers of adsorbed tetraphenylporphyrin (2H-TPP) on a silver surface were exposed to cobalt vapors, resulting in the complexation of the metal by the porphyrin. The formation of the metal complexes was monitored by means of X-ray photoelectron spectroscopy (XPS), which reveals that this metalation reaction leads to a chemical equivalence of all four nitrogen atoms. The described in situ metalation provides a convenient way to produce adsorbed monolayers of more reactive (e.g., air- or solvent-sensitive) or thermally unstable metalloporphyrins that are difficult to evaporate or even to obtain as pure compounds at room temperature.
The generation of nanostructures with arbitrary shapes and well-defined chemical composition is still a challenge and targets the core of the fast-growing field of nanotechnology. One approach is the maskless nanofabrication technique of electron-beam-induced deposition (EBID). Up to now, the purity of these EBID structures has been rather poor. Here we demonstrate that by performing the EBID process solely under ultrahigh vacuum conditions, the lithographic generation of iron nanostructures on Si(100) with an unprecedented purity of higher than 95% is possible. One particular new aspect is the formation of EBID deposits with reduced size in a strain-induced diffusive process, resulting in deposits significantly smaller than 10 nm.
Beam me up: A novel two‐step process allows iron nanostructures to be generated locally on SiOx/Si at 300 K. The surface is first locally activated by an electron beam. Then the activated structures are exposed to [Fe(CO)5], which decomposes and grows autocatalytically to give pure Fe nanocrystals.
The appearance of tetraphenylporphyrins in scanning tunneling micrographs depends strongly on the applied bias voltage. Here, we report the observation and identification of certain features in scanning tunneling microscopy (STM) images of intermixed layers of tetraphenylporphyrin (2HTPP) and cobalt-tetraphenylporphyrin (CoTPP) on Ag(111). A significant fraction of an ordered monolayer of commercially available CoTPP appears as "pits" at negative bias voltages around -1 V. The obvious possibility that these pits are missing molecules within the ordered layer could be ruled out by imaging the molecules at reduced bias voltages, at which the contrast of the pits fades, and at positive bias voltages around +1 V, at which the image contrast is inverted. With the investigation of the electronic structure, in particular the density of states (DOS) close to the Fermi level, of CoTPP and 2HTPP layers by means of ultraviolet photoelectron spectroscopy (UPS) and scanning tunneling spectroscopy (STS), the contrast mechanism was clarified. The correlation of the bias dependent contrast with the UPS data enabled us to interpret the "pits" as individual 2HTPP molecules. Additional evidence could be provided by imaging layers of different mixtures of 2HTPP and CoTPP and by high-resolution STM imaging of the features in CoTPP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.