Activation of the transcription factor nuclear factor-B (NF-B) has been suggested to participate in chronic disorders, such as diabetes and its complications. In contrast to the short and transient activation of NF-B in vitro, we observed a long-lasting sustained activation of NF-B in the absence of decreased IB␣ in mononuclear cells from patients with type 1 diabetes. This was associated with increased transcription of NF-Bp65. A comparable increase in NF-Bp65 antigen and mRNA was also observed in vascular endothelial cells of diabetic rats. As a mechanism, we propose that binding of ligands such as advanced glycosylation end products (AGEs), members of the S100 family, or amyloid- peptide ( T issue culture models of cellular activation provide easily accessible systems for detailed analysis of mechanisms potentially underlying the pathogenesis of human disease. However, the time course of such in vitro models is usually significantly abbreviated, limited to hours to days, compared with the pace of disorders under study in vivo. This indicates the importance of seeking out mechanisms in cell culture that might bridge the gap that accounts for the chronicity of cellular perturbation observed in the intact organism.The transcription factor nuclear factor-B (NF-B) has been proposed as a critical bridge between oxidant stress and gene expression (1-8). Exposure of cells to inflammatory, infectious, or other stressful stimuli results in rapid phosphorylation and degradation of IB␣ and the subsequent release and translocation of NF-B into the nucleus (1-11). This mechanism ensures quick and finely tuned cellular responses in the absence of de novo protein synthesis. Because transcription of IB␣ is positively autoregulated by NF-B (9 -11), activation of NF-B is usually self-terminated within minutes to hours (1-11). Such a scenario lends itself to analysis by short-term in vitro studies in which stimulus-induced responses are transient and the system returns to the baseline state over hours. Consequently, induction of NF-B and enhanced transcription of its target genes in vitro have been studied mainly in the setting of acute cellular responses.Reactive oxygen intermediates are generated by processes that occur over seconds. However, increasing evidence suggests a role for oxidative stress in chronic degenerative diseases such as atherosclerosis (1,6,12,13), diabetes (14 -16), and Alzheimer's disease (17)(18)(19). This indicates the relevance of signal transduction systems such as NF-B, which are capable of transforming the appearance and disappearance of short-lived oxygen free radicals into more sustained signals for cellular activation
Tissue factor, a member of the cytokine-receptor superfamily and high-affinity receptor and cofactor for plasma factor VII/VIIa (ref. 1), is the primary cellular initiator of blood coagulation. It is involved in thrombosis and inflammation associated with sepsis, atherosclerosis and cancer, and can participate in other cellular processes including intracellular signalling, metastasis, tumor-associated angiogenesis, and embryogenesis. Here we report that inactivation of the tissue factor gene (TF) results in abnormal circulation from yolk sac to embryo beyond embryonic day 8.5, leading to embryo wasting and death. Vitelline vessels from null mice were deficient in smooth-muscle alpha-actin-expressing mesenchymal cells, which participate in organization of the vessel wall. This implies that tissue factor has a role in blood vessel development.
Meth-A sarcoma cells were stable transfected to overexpress (sense construct) or underexpress (antisense construct) tissue factor. In vitro, there was no difference in plating efficiency or growth between these cell lines.In vivo, tumor cells transfected to overexpress tissue factor grew more rapidly, and established larger and more vascularized tumors than control transfectants. Antisense transfectants grew the slowest and were the least vascularized. Anticoagulation of mice with warfarin did not alter the difference between these tumor lines. Tumor cells overexpressing tissue factor released more (compared with control transfectants) mitogenic activity for endothelial cells in parallel with enhanced transcription of vascular permeability factor/vascular endothelial cell growth factor (VEGF/ VPF), and diminished transcription of thrombospondin (TSP2), a molecule with anti-angiogenic properties. Antisense tissue factor transfectants, while releasing the lowest amount of mitogenic activity, had increased thrombospondin and decreased VEGF/VPF transcription compared with control transfectants or wild-type cells. Experiments with these sense, antisense, truncated sense, or vector tumor lines gave comparable results in complete medium, serum free medium or in the presence of hirudin, indicating that the activation of the coagulation mechanism was not likely to be responsible for changes in tumor cell properties. These results suggest that tissue factor regulates angiogenic properties of tumor cells by altering the production of growth regulatory molecules of endothelium by a mechanism distinct from tissue factor activation of the coagulation mechanism. (J. Clin. Invest. 1994. 94:1320-1327
Although tissue factor (TF), the principial initiator of physiological coagulation and pathological thrombosis, has recently been proposed to be present in human blood, the functional significance and location of the intravascular TF is unknown. In the plasma portion of blood, we found TF to be mainly associated with circulating microvesicles. By cell sorting with the specific marker CD42b, platelet-derived microvesicles were identified as a major location of the plasma TF. This was confirmed by the presence of full-length TF in microvesicles acutely shedded from the activated platelets. TF was observed to be stored in the α-granules and the open canalicular system of resting platelets and to be exposed on the cell surface after platelet activation. Functional competence of the blood-based TF was enabled when the microvesicles and platelets adhered to neutrophils, as mediated by P-selectin and neutrophil counterreceptor (PSGL-1, CD18 integrins) interactions. Moreover, neutrophil-secreted oxygen radical species supported the intravascular TF activity. The pools of platelet and microvesicle TF contributed additively and to a comparable extent to the overall blood TF activity, indicating a substantial participation of the microvesicle TF. Our results introduce a new concept of TF-mediated coagulation crucially dependent on TF associated with microvesicles and activated platelets, which principally enables the entire coagulation system to proceed on a restricted cell surface.Key words: lipopolysaccharide • platelet rich plasma • superoxide dismutase • catalase • microparticles T wo principal events that are initiated after disrupture of the endothelial barrier are thought to mark the initiation of hemostasis. Blood platelets adhere to subendothelial collagen providing a provisional, mechanically unstable closure of the vessel perforation. Concomitantly, the coagulation process is started. This is mainly due to the formation of an initiator complex between tissue factor (TF), an integral cell membrane protein predominantly present in the adventitial layer of the vessel wall, and the blood-based factor VII/VIIa (1). The TF/factor VIIa complex proteolytically activates factor X, which, in turn, elicits the formation of thrombin. The TF/factor VIIa complex is likely to play a central role in the genesis of arterial and venous thrombosis (2, 3), leading causes of mortality in many countries. TF is present in the lipid rich core of unstable atherosclerotic plaques and may be a major determinant of the thrombogenicity of the plaques (4-6). Indeed, on rupture of the plaque, the interaction of TF with factor VIIa substantially contributes to the rapid formation of the occluding thrombus, the principal final step in the genesis of coronary ischemic disease.Apart from its presence in the vascular wall, TF has also been detected in the blood (intravascular TF). So far, no clear conclusion has been reached about the localization and the functional meaning of the blood-based TF. In the plasma compartment, TF is present un...
Tissue factor (TF) expression is associated with life-threatening thrombosis in a variety of human diseases, including sepsis, cancer, and atherosclerosis. Recently, it was shown that inactivation of the murine TF (mTF) gene results in embryonic lethality. To date, despite extensive studies on the regulation of the TF promoter in vitro, no studies have examined the cis-acting regulatory elements that control TF gene expression in vivo. Here we report that a human TF (hTF) minigene containing the human TF promoter and human TF cDNA directed a low level (approximately 1% relative to mouse TF) of both constitutive and LPS-inducible human TF expression in transgenic mice. Importantly, the human TF minigene rescued the embryonic lethality of murine TF null embryos, suggesting that human TF substituted for murine TF during embryogenesis. Rescued mice (mTF-/-, hTF+), which expressed low levels (approximately 1%) of TF activity, developed normally with no signs of a bleeding diathesis, suggesting that low TF expression can maintain hemostasis compatible with normal survival. These studies establish a novel mouse model system that can be used to examine the regulation of the human TF gene in vivo and the impact of low TF levels on the hemostatic balance in various thrombotic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.