Background Mutations in SCN5A, encoding the cardiac sodium channel (NaV1.5) typically cause ventricular arrhythmia or conduction slowing. Recently, SCN5A mutations have been associated with heart failure combined with variable atrial and ventricular arrhythmia. Here we present the clinical, genetic and functional features of an amiodarone-responsive multifocal ventricular ectopy-related cardiomyopathy associated with a novel mutation in a NaV1.5 voltage sensor domain. Methods and results A novel, de novo SCN5A mutation (NaV1.5-R225P) was identified in a boy with prenatal arrhythmia and impaired cardiac contractility followed by postnatal multifocal ventricular ectopy suppressible by amiodarone. We investigated the functional consequences of NaV1.5-R225P expressed heterologously in tsA201 cells. Mutant channels exhibited significant abnormalities in both activation and inactivation leading to large, hyperpolarized window- and ramp-currents that predict aberrant sodium influx at potentials near the cardiomyocyte resting membrane potential. Mutant channels also exhibited significantly increased persistent (late) sodium current. This profile of channel dysfunction shares features with other SCN5A voltage sensor mutations associated with cardiomyopathy and overlapped that of congenital long-QT syndrome. Amiodarone stabilized fast inactivation, suppressed persistent sodium current and enhanced frequency-dependent rundown of channel availability. Conclusion We determined the functional consequences and pharmacological responses of a novel SCN5A mutation associated with an arrhythmia-associated cardiomyopathy. Comparisons with other cardiomyopathy-associated NaV1.5 voltage sensor mutations revealed a pattern of abnormal voltage dependence of activation as a shared molecular mechanism of the syndrome.
Background Mutations of the cardiac voltage-gated sodium channel (SCN5A gene encoding NaV1.5) cause congenital long-QT syndrome type 3 (LQT3). Most NaV1.5 mutations associated with LQT3 promote a mode of sodium channel gating in which some channels fail to inactivate, contributing to increased late sodium current (INaL), which is directly responsible for delayed repolarization and prolongation of the QT interval. LQT3 patients have highest risk of arrhythmia during sleep or during periods of slow heart rate. During exercise (high heart rate), there is elevated steady-state intracellular free calcium (Ca2+) concentration. We hypothesized that higher levels of intracellular Ca2+ may lower arrhythmia risk in LQT3 subjects through effects on INaL. Methods and Results We tested this idea by examining the effects of varying intracellular Ca2+ concentrations on the level of INaL in cells expressing a typical LQT3 mutation, delKPQ, and another SCN5A mutation, R225P. We found that elevated intracellular Ca2+ concentration significantly reduced INaL conducted by mutant channels but not wild-type channels. This attenuation of INaL in delKPQ expressing cells by Ca2+ was not affected by the CaM kinase II inhibitor KN-93 but was partially attenuated by truncating the C-terminus of the channel. Conclusions We conclude that intracellular Ca2+ contributes to the regulation of INaL conducted by NaV1.5 mutants and propose that, during excitation-contraction coupling, elevated intracellular Ca2+ suppresses mutant channel INaL and protects cells from delayed repolarization. These findings offer a plausible explanation for the lower arrhythmia risk in LQT3 subjects during fast heart rates.
Background Cystinuria is an inherited disorder of renal amino acid transport that causes recurrent nephrolithiasis and significant morbidity in humans. It has an incidence of 1 in 7000 worldwide making it one of the most common genetic disorders in man. We phenotypically characterized a mouse model of cystinuria type A resultant from knockout of Slc3a1 . Methods Knockout of Slc3a1 at RNA and protein levels was evaluated using real-time quantitative PCR and immunofluorescence. Slc3a1 knockout mice were placed on normal or breeder chow diets and evaluated for cystine stone formation over time suing x-ray analysis, and the development of kidney injury by measuring injury biomarkers. Kidney injury was also evaluated via histologic analysis. Amino acid levels were measured in the blood of mice using high performance liquid chromatography. Liver glutathione levels were measured using a luminescent-based assay. Results We confirmed knockout of Slc3a1 at the RNA level, while Slc7a9 RNA representing the co-transporter was preserved. As expected, we observed bladder stone formation in Slc3a1 −/− mice. Male Slc3a1 −/− mice exhibited lower weights compared to Slc3a1 +/+ . Slc3a1 −/− mice on a regular diet demonstrated elevated blood urea nitrogen (BUN) without elevation of serum creatinine. However, placing the knockout animals on a breeder chow diet, containing a higher cystine concentration, resulted in the development of elevation of both BUN and creatinine indicative of more severe chronic kidney disease. Histological examination revealed that these dietary effects resulted in worsened kidney tubular obstruction and interstitial inflammation as well as worsened bladder inflammation. Cystine is a precursor for the antioxidant molecule glutathione, so we evaluated glutathione levels in the livers of Slc3a1 −/− mice. We found significantly lowered levels of both reduced and total glutathione in the knockout animals. Conclusions Our results suggest that that diet can affect the development and progression of chronic kidney disease in an animal model of cystinuria, which may have important implications for patients with this disease. Additionally, reduced glutathione may predispose those with cystinuria to injury caused by oxidative stress. Word count: 327. Electronic supplementary material The online version of this article (10.1186/s12882-019-1417-8) contains supplementary material, which is available to authorized users.
Mobile genetic elements have been harnessed for gene transfer for a wide variety of applications including generation of stable cell lines, recombinant protein production, creation of transgenic animals, and engineering cell and gene therapy products. The piggyBac transposon family includes transposase or transposase-like proteins from a variety of species including insect, bat and human. Recently, human piggyBac transposable element derived 5 (PGBD5) protein was reported to be able to transpose piggyBac transposons in human cells raising possible safety concerns for piggyBac-mediated gene transfer applications. We evaluated three piggyBac-like proteins across species including piggyBac (insect), piggyBat (bat) and PGBD5 (human) for their ability to mobilize piggyBac transposons in human cells. We observed a lack of cross-species transposition activity. piggyBac and piggyBat activity was restricted to their cognate transposons. PGBD5 was unable to mobilize piggyBac transposons based on excision, colony count and plasmid rescue analysis, and it was unable to bind piggyBac terminal repeats. Within the piggyBac family, we observed a lack of cross-species activity and found that PGBD5 was unable to bind, excise or integrate piggyBac transposons in human cells. Transposition activity appears restricted within species within the piggyBac family of mobile genetic elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.