Red cabbage (Brassica oleracea L.) is an excellent source of food colorant. This study aimed to evaluate the anthocyanin pigment contents and profiles from seven red cabbage cultivars at two maturity stages (8 weeks apart) and evaluate their color characteristics and behavior under acidic and neutral pH. Anthocyanin concentrations ranged from 1111 to 1780 mg Cy3G/100 g DM and did not increase with time. Cultivar and maturation affected pigment profile. Some varieties accumulated ≥30% of diacylated pigments, and proportions of monoacylated pigments decreased with time. Extracts from selected varieties at first harvesting time produced colors similar (λmax = 520 nm and ΔE = 6.1-8.8) to FD&C Red No. 3 at pH 3.5. At pH 7, extracts from the second harvest with s higher proportion of diacylation produced λmax ≃ 610 nm, similar to FD&C Blue No. 2. Cultivar selection and maturation affected color and stability of red cabbage extracts at different pH values.
The color of food is critical to the food and beverage industries, as it influences many properties beyond eye-pleasing visuals including flavor, safety, and nutritional value. Blue is one of the rarest colors in nature’s food palette—especially a cyan blue—giving scientists few sources for natural blue food colorants. Finding a natural cyan blue dye equivalent to FD&C Blue No. 1 remains an industry-wide challenge and the subject of several research programs worldwide. Computational simulations and large-array spectroscopic techniques were used to determine the 3D chemical structure, color expression, and stability of this previously uncharacterized cyan blue anthocyanin-based colorant. Synthetic biology and computational protein design tools were leveraged to develop an enzymatic transformation of red cabbage anthocyanins into the desired anthocyanin. More broadly, this research demonstrates the power of a multidisciplinary strategy to solve a long-standing challenge in the food industry.
For diacylated anthocyanins, π-stacking (vertical) interactions + (horizontal) metal binding modulate color and greatly enhance its stability in neutral solution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.