The systemic renin-angiotensin system (RAS) is suppressed in normal aging, but the activity of the tissue RAS is not well defined. We examined the systemic and intrarenal RAS status of aging normal rats and responses to suppression and stimulation of the production of endogenous ANG II. Studies were performed in young (3 mo) and early aging (15 mo) male Sprague-Dawley rats. Angiotensin-converting enzyme inhibitors modestly decreased mean arterial pressure (MAP) in young (3 mo) and early aging (15 mo) rats and limited proteinuria in the older rats. There were no significant age-related effects on renal function or on endogenous RAS activity. Intravenous infusion of the precursor ANG I led to comparable increases in MAP in younger and older rats. In contrast, the renal effects (reduction in glomerular filtration and plasma flow rates) were exaggerated in the older animals. Intrarenal arterial ANG I did not affect MAP in any group. In young rats, there were no significant hemodynamic effects in either the ipsilateral (infused) or the contralateral (noninfused) kidney. In the older rats, both kidneys had a significant fall in renal renal plasma flow rate (RPF) with left renal arterial infusion of ANG I. Accordingly, these studies early in the course of aging found only subtle changes in the activity, responsiveness, and metabolism of the RAS. Thus early aging is associated with a modest but important increase in sensitivity to RAS stimulation.
In polycystic rats, acute RAS suppression markedly ameliorates renal dysfunction. However, although chronic enalapril and hydralazine protect against the loss of renal function, only enalapril limits renal growth and proteinuria, and neither significantly limits tubulointerstitial fibrosis. The long-term studies give clear support to the importance of blood pressure control, per se, but only partial support to the importance of the particular agent used. As in clinical studies, angiotensin-converting enzyme inhibition may be less beneficial in ADPKD than in renal diseases characterized by predominant glomerular injury.
The renin-angiotensin system (RAS) has been implicated in the pathogenesis of diabetic nephropathy. In diabetes, renal RAS components are dysregulated, potentially increasing renal RAS effects. To explore the renal RAS, studies were conducted in control and diabetic rats. In both groups, intravenous angiotensin (ANG) I and ANG II produced similar increases in mean arterial pressure (MAP). In contrast, glomerular filtration rate defined only in diabetic rats. Renal plasma flow fell in both groups but decreased more in diabetic rats. Additional groups were given the same dose of ANG I directly into the left renal artery, and hemodynamics were studied in the treated and untreated kidneys. In contrast to the intravenous studies, intra-arterial ANG I had no effect on MAP in either group. The renal hemodynamic effects were similar to those in intravenous studies. Additionally, diabetic rats exhibited enhanced hemodynamic sensitivity in the untreated kidney, suggesting that renal effects could occur at nonpressor concentrations of circulating ANG II. Thus renal (but not systemic) responsiveness to angiotensins is enhanced in diabetic rats.
Progressive deterioration of renal function occurs during normal aging. Previous studies on the aging kidney have demonstrated glomerular hemodynamic changes, specifically, glomerular capillary hypertension, as maladaptations that lead to proteinuria and glomerular sclerosis over time. Aging rats treated with angiotensin-converting enzyme inhibition have relatively less proteinuria and sclerosis, suggesting that age-related changes in renal function may be associated with alterations in the intrarenal renin-angiotensin system, which thus may play a major role in the pathogenesis of these maladaptations. To investigate this possibility, renal and systemic renin-angiotensin systems were examined at an early phase of the aging process (3 months) and at a later phase (12 months) in male Sprague-Dawley rats. Although plasma renin and serum angiotensin-converting enzyme concentrations did not differ significantly, the intrarenal system showed down-regulation of renin mRNA and angiotensin-converting enzyme levels with aging, whereas angiotensinogen levels remained stable. The decrease in renin mRNA appeared to precede the fall in plasma renin concentration in the aging process. Additional studies in 15-month-old rats confirmed that, by this time, both basal and stimulated renal renin release rates were impaired in older rats. Thus, both decreased renin synthesis and impaired renin release underlie the fall in plasma renin with normal aging. This decrease may act to lower intrarenal baseline levels of angiotensin II, an adaptation of likely importance in the modulation of intrarenal vascular tone and tubular function in the aging kidney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.