Course-based undergraduate research experiences (CUREs) provide an avenue for student participation in authentic scientific opportunities. Within the context of such coursework, students are often expected to collect, analyze, and evaluate data obtained from their own investigations. Yet, limited research has been conducted that examines mechanisms for supporting students in these endeavors. In this article, we discuss the development and evaluation of an interactive statistics workshop that was expressly designed to provide students with an open platform for graduate teaching assistant (GTA)-mentored data processing, statistical testing, and synthesis of their own research findings. Mixed methods analyses of pre/post-intervention survey data indicated a statistically significant increase in students’ reasoning and quantitative literacy abilities in the domain, as well as enhancement of student self-reported confidence in and knowledge of the application of various statistical metrics to real-world contexts. Collectively, these data reify an important role for scaffolded instruction in statistics in preparing emergent scientists to be data-savvy researchers in a globally expansive STEM workforce.
Evidence indicates that students who participate in scientific research during their undergraduate experience are more likely to pursue careers in the STEM disciplines and to develop increased scientific reasoning and literacy skills. One avenue to increase student engagement in research is via their enrollment in course-based undergraduate research experiences (CUREs), where they are able to conduct authentic research as part of the laboratory curriculum. The information presented herein provides an example of a CURE which was developed and implemented in an introductory cell and molecular biology course at the University of Northern Colorado. In addition to describing the Tigriopus CURE curriculum itself, we also present evidence regarding the effectiveness of the CURE in promoting students’ development of confidence in science process skills, quantitative reasoning skills, and written communication skills. The curricular details of the Tigriopus CURE are provided in this article to provide instructors who are interested in CUREs the opportunity to implement this specific CURE in their own course.
In response to empirical evidence and calls for change, individual undergraduate biology instructors are reforming their pedagogical practices. To assess the effectiveness of these reforms, many instructors use course-specific or skill-specific assessments (e.g., concept inventories). We commend our colleagues’ noble efforts, yet we contend that this is only a starting point. In this Perspectives article, we argue that departments need to engage in reform and programmatic assessment to produce graduates who have both subject-matter knowledge and higher-order cognitive skills. We encourage biology education researchers to work collaboratively with content specialists to develop program-level assessments aimed at measuring students’ conceptual understanding and higher-order cognitive skills, and we encourage departments to develop longitudinal plans for monitoring their students’ development of these skills.
Why did Gower choose to write his most famous poem in English? New insights into his purpose and the context and tradition of the poem are presented here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.