The microtubule-associated protein tau is a principal component of neurofibrillary tangles, and has been identified as a key molecule in Alzheimer's disease and other tauopathies. However, it is unknown how a protein that is primarily located in axons is involved in a disease that is believed to have a synaptic origin. To investigate a possible synaptic function of tau, we studied synaptic plasticity in the hippocampus and found a selective deficit in long-term depression (LTD) in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi knockdown of tau in vitro. We found that the induction of LTD is associated with the glycogen synthase kinase-3-mediated phosphorylation of tau. These observations demonstrate that tau has a critical physiological function in LTD.
Tau is required for the induction of long-term depression (LTD) of synaptic transmission in the hippocampus. Here we probe the role of tau in LTD, finding that an AMPA receptor internalization mechanism is impaired in tau KO mice, and that LTD causes specific phosphorylation at the serine 396 and 404 residues of tau. Surprisingly, we find that phosphorylation at serine 396, specifically, is critical for LTD but has no role in LTP. Finally, we show that tau KO mice exhibit deficits in spatial reversal learning. These findings underscore the physiological role for tau at the synapse and identify a behavioral correlate of its role in LTD.
SummaryDysfunction of microglia, the brain’s immune cells, is linked to neurodegeneration. Homozygous missense mutations in TREM2 cause Nasu-Hakola disease (NHD), an early-onset dementia. To study the consequences of these TREM2 variants, we generated induced pluripotent stem cell-derived microglia-like cells (iPSC-MGLCs) from patients with NHD caused by homozygous T66M or W50C missense mutations. iPSC-MGLCs expressed microglial markers and secreted higher levels of TREM2 than primary macrophages. TREM2 expression and secretion were reduced in variant lines. LPS-mediated cytokine secretion was comparable between control and TREM2 variant iPSC-MGLCs, whereas survival was markedly reduced in cells harboring missense mutations when compared with controls. Furthermore, TREM2 missense mutations caused a marked impairment in the phagocytosis of apoptotic bodies, but not in Escherichia coli or zymosan substrates. Coupled with changes in apoptotic cell-induced cytokine release and migration, these data identify specific deficits in the ability of iPSC-MGLCs harboring TREM2 missense mutations to respond to specific pathogenic signals.
BackgroundThe R47H variant of the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) significantly increases the risk for late onset Alzheimer’s disease. Mouse models accurately reproducing phenotypes observed in Alzheimer’ disease patients carrying the R47H coding variant are required to understand the TREM2 related dysfunctions responsible for the enhanced risk for late onset Alzheimer’s disease.MethodsA CRISPR/Cas9-assisted gene targeting strategy was used to generate Trem2 R47H knock-in mice. Trem2 mRNA and protein levels as well as Trem2 splicing patterns were assessed in these mice, in iPSC-derived human microglia-like cells, and in human brains from Alzheimer’s patients carrying the TREM2 R47H risk factor.ResultsTwo independent Trem2 R47H knock-in mouse models show reduced Trem2 mRNA and protein production. In both mouse models Trem2 haploinsufficiency was due to atypical splicing of mouse Trem2 R47H, which introduced a premature stop codon. Cellular splicing assays using minigene constructs demonstrate that the R47H variant induced abnormal splicing only occurs in mice but not in humans. TREM2 mRNA levels and splicing patterns were both normal in iPSC-derived human microglia-like cells and patient brains with the TREM2 R47H variant.ConclusionsThe Trem2 R47H variant activates a cryptic splice site that generates miss-spliced transcripts leading to Trem2 haploinsufficiency only in mice but not in humans. Since Trem2 R47H related phenotypes are mouse specific and do not occur in humans, humanized TREM2 R47H knock-in mice should be generated to study the cellular consequences caused by the human TREM2 R47H coding variant. Currently described phenotypes of Trem2 R47H knock-in mice can therefore not be translated to humans.Electronic supplementary materialThe online version of this article (10.1186/s13024-018-0280-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.