Traumatic brain injury (TBI) presents in various forms ranging from mild alterations of consciousness to an unrelenting comatose state and death. In the most severe form of TBI, the entirety of the brain is affected by a diffuse type of injury and swelling. Treatment modalities vary extensively based on the severity of the injury and range from daily cognitive therapy sessions to radical surgery such as bilateral decompressive craniectomies. Guidelines have been set forth regarding the optimal management of TBI, but they must be taken in context of the situation and cannot be used in every individual circumstance. In this review article, we have summarized the current status of treatment for TBI in both clinical practice and basic research. We have put forth a brief overview of the various subtypes of traumatic injuries, optimal medical management, and both the noninvasive and invasive monitoring modalities, in addition to the surgical interventions necessary in particular instances. We have overviewed the main achievements in searching for therapeutic strategies of TBI in basic science. We have also discussed the future direction for developing TBI treatment from an experimental perspective.
This paper considers uniformly valid (over a class of data generating processes) inference for linear functionals of partially identified parameters in cases where the identified set is defined by linear (in the parameter) moment inequalities. We propose a bootstrap procedure for constructing uniformly valid confidence sets for a linear functional of a partially identified parameter. The proposed method amounts to bootstrapping the value functions of a linear optimization problem, and subsumes subvector inference as a special case. In other words, this paper shows the conditions under which "naively" bootstrapping a linear program can be used to construct a confidence set with uniform correct coverage for a partially identified linear functional. Unlike other proposed subvector inference procedures, our procedure does not require the researcher to repeatedly invert a hypothesis test, and is extremely computationally efficient. In addition to the new procedure, the paper also discusses connections between the literature on optimization and the literature on subvector inference in partially identified models.
Extrinsic tail muscles play a greater role in tail movement in the rat than their intrinsic counterparts and are innervated by multiple neurological segments. These findings have major implications for future research on cauda equina injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.