The demand of wireless solutions in industrial applications increases since the early nineties. This trend is not only ongoing, it is further pushed by developments in the area of software stacks like the latest Bluetooth Low Energy Stack. It is also pushed by new chip-designs and powerful and highly integrated electronic hardware. The acceptance of wireless technologies as a possible solution for industrial applications, has overcome the entry barrier [1]. The first step to see wireless as standard for many industrial applications is almost accomplished. Nevertheless there is nearly none acceptance of wireless technology for Safety applications. One highly challenging and demanding requirement is still unsolved: The aspect safety and robustness. Those topics have been addressed in many cases but always in a similar manner. WirelessHART as an example addresses this topic with redundant so called multiple propagation paths and frequency hopping to handle with interferences and loss of network participants. So far the pure peer to peer link is rarely investigated and there are less safety solutions available. One product called LoRa™ can be seen as one possible solution to address this lack of safety within wireless links. This paper focuses on the safety performance evaluation of a modem-chip-design. The use of diverse and redundant wireless technologies like LoRa can lead to an increase acceptance of wireless in safety applications. Many measurements in real industrial application have been carried out to be able to benchmark the new chip in terms of the safety aspects. The content of this research results can help to raise the level of confidence in wireless. In this paper, the term "safety" is used for data transmission reliability.
To jointly map an unknown environment with a team of autonomous robots is a challenging problem, particularly in large environments, as for example the devastated area after a disaster. Under such conditions standard methods for Simultaneous Localization And Mapping (SLAM) are difficult to apply due to possible misinterpretations of sensor data, leading to erroneous data association for loop closure. We consider the problem of multi-robot range-only SLAM for robot teams by solving the data association problem with wireless sensor nodes that we designed for this purpose. The memory of these nodes is utilized for the exchange of map data between multiple robots, facilitating loop-closures on jointly generated maps. We introduce RSLAM, which is a variant of FastSlam, extended for range-only measurements and the multi-robot case. Maps are generated from robot odometry and range estimates, which are computed from the RSSI (Received Signal Strength Indication). The proposed method has been extensively tested in USARSim, which serves as basis for the Virtual Robots competition at RoboCup, and by real-world experiments with a team of mobile robots. The presented results indicates that the approach is capable of building consistent maps in presence of real sensor noise, as well as to improve mapping results of multiple robots by data sharing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.