If a magnetic field normal to the surface of a magnetic fluid is increased beyond a critical value a spontaneous deformation of the surface arises (normal field instability). The instability is subcritical and leads to peaks of a characteristic shape. We investigate the neighborhood of this instability experimentally under the influence of a temporal modulation of the magnetic field. We use a small vessel, where only one peak arises. The modulation can either be stabilizing or destabilizing, depending on the frequency and amplitude. We observe a cascade of odd-numbered response-periods up to period 11, and also a domain of even-numbered periods. We propose a minimal model involving a cutoff-condition which captures the essence of the experimental observations.
In a magnetic fluid, parametrically driven surface waves can be excited by
an external oscillating magnetic field. A static magnetic field changes
the restoring forces and damping coefficients of the various surface
waves. This property enables the excitation of both subharmonic and
harmonic responses of the standing waves.
The dispersion relation of surface waves of a magnetic fluid in a magnetic field is studied experimentally. We verify the theoretically predicted existence of a non-monotonic dispersion relation. In particular, we demonstrate the existence of two different wave numbers occuring at the same frequency in an annular geometry.
Observations of parametrically excited surface waves in a magnetic fluid are presented. Under the influence of a magnetic field these waves have a non-monotonic dispersion relation, which leads to a richer behavior than in ordinary liquids. We report observation of three novel effects, namely: i) domain structures, ii) oscillating defects and iii) relaxational phase oscillations.Typeset using REVT E X 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.