Residual feed intake (RFI) is commonly used as a measure of feed efficiency at a given level of production. A total of 16,872 pigs with their pedigree traced back as far as possible was used to estimate genetic parameters for RFI, growth performance, food conversion ratio (FCR), body conformation, and feeding behavior traits in 3 Danish breeds [Duroc (DD), Landrace (LL), and Yorkshire (YY)]. Two measures of RFI were considered: residual feed intake 1 (RFI1) was calculated based on regression of daily feed intake (DFI) from 30 to 100 kg on initial test weight and ADG from 30 to 100 kg (ADG2). Residual feed intake 2 (RFI2) was as RFI1, except it was also regressed with respect to backfat (BF). The estimated heritabilities for RFI1 and RFI2 were 0.34 and 0.38 in DD, 0.34 and 0.36 in LL, and 0.39 and 0.40 in YY, respectively. The heritabilities ranged from 0.32 (DD) to 0.54 (LL) for ADG2, from 0.54 (DD) to 0.67 (LL) for BF, and from 0.13 (DD) to 0.19 (YY) for body conformation. Feeding behavior traits including DFI, number of visits to feeder per day (NVD), total time spent eating per day (TPD), feed intake rate (FR), feed intake per visit (FPV), and time spent eating per visit (TPV) were moderately to highly heritable. Residual feed intake 2 was genetically independent of ADG2 and BF in all breeds, except it had low genetic correlation to ADG2 in YY (0.2). Residual feed intake 1 was also genetically independent of ADG2 in DD and LL. Both RFI traits had strong genetic correlations with DFI (0.85 to 0.96) and FCR (0.76 to 0.99). They had low or no genetic correlations with feeding behavior traits. Unfavorable genetic correlations were found between ADG2 and both BF and DFI. Among feeding behavior traits, DFI had low genetic correlations to other traits in all breeds. High and negative genetic correlations were also found between TPD with FR (-0.79 in YY to -0.88 in DD), NVD, and TPD (-0.91 in DD to -0.94 in YY) and between NVD and FPV (-0.83 in DD to -0.91 in YY) in all breeds. The genetic trend for feed efficiency was favorable in all breeds regardless of the definition of feed efficiency used. In summary, RFI1 and RFI2 were heritable and selection for reduced RFI2 can be performed without adversely affecting ADG and BF and could replace FCR in the selection index for the Danish pig breeds. Selection could also be based on RFI1 for breeds with fewer concerns about a negative effect of BF or for breeds that do not have BF records.
BackgroundFeed efficiency is one of the major components determining costs of animal production. Residual feed intake (RFI) is defined as the difference between the observed and the expected feed intake given a certain production. Residual feed intake 1 (RFI1) was calculated based on regression of individual daily feed intake (DFI) on initial test weight and average daily gain. Residual feed intake 2 (RFI2) was as RFI1 except it was also regressed with respect to backfat (BF). It has been shown to be a sensitive and accurate measure for feed efficiency in livestock but knowledge of the genomic regions and mechanisms affecting RFI in pigs is lacking. The study aimed to identify genetic markers and candidate genes for RFI and its component traits as well as pathways associated with RFI in Danish Duroc boars by genome-wide associations and systems genetic analyses.ResultsPhenotypic and genotypic records (using the Illumina Porcine SNP60 BeadChip) were available on 1,272 boars. Fifteen and 12 loci were significantly associated (p < 1.52 × 10-6) with RFI1 and RFI2, respectively. Among them, 10 SNPs were significantly associated with both RFI1 and RFI2 implying the existence of common mechanisms controlling the two RFI measures. Significant QTL regions for component traits of RFI (DFI and BF) were detected on pig chromosome (SSC) 1 (for DFI) and 2 for (BF). The SNPs within MAP3K5 and PEX7 on SSC 1, ENSSSCG00000022338 on SSC 9, and DSCAM on SSC 13 might be interesting markers for both RFI measures. Functional annotation of genes in 0.5 Mb size flanking significant SNPs indicated regulation of protein and lipid metabolic process, gap junction, inositol phosphate metabolism and insulin signaling pathway are significant biological processes and pathways for RFI, respectively.ConclusionsThe study detected novel genetic variants and QTLs on SSC 1, 8, 9, 13 and 18 for RFI and indicated significant biological processes and metabolic pathways involved in RFI. The study also detected novel QTLs for component traits of RFI. These results improve our knowledge of the genetic architecture and potential biological pathways underlying RFI; which would be useful for further investigations of key candidate genes for RFI and for development of biomarkers.
The objective of this study was to review the current status of genetic evaluation systems for production and functional traits as practiced in different Interbull member countries and to discuss that status in relation to research results and potential improvements. Thirty-one countries provided information. Substantial variation was evident for number of traits considered per country, trait definition, genetic evaluation procedure within trait, effects included, and how these were treated in genetic evaluation models. All countries lacked genetic evaluations for one or more economically important traits. Improvement in the genetic evaluation models, especially for many functional traits, could be achieved by closing the gaps between research and practice. More detailed and up to date information about national genetic evaluation systems for traits in different countries is available at www.interbull.org. Female fertility and workability traits were considered in many countries and could be next in line for international genetic evaluations.
The purpose of this study was to estimate the genetic correlations among claw and leg health and potential indicator traits. Claw health was defined as absence of heel horn erosion, interdigital dermatitis, interdigital phlegmon, interdigital hyperplasia, laminitis, and sole ulcer. Leg health was defined as absence of hock infection, swollen hock, and bruising. The potential indicators were locomotion and foot and leg conformation, represented by rear leg side view, rear leg rear view, foot angle, and apparent hock quality and bone structure. The study was conducted using records from 429,877 Danish Holstein cows in first lactation. Binary health traits were divided into 3 subcategories: claw health, leg health, and absence of all claw and leg disorders. Genetic (r(g)) and phenotypic correlations were estimated using a bivariate linear sire model and REML. Estimated heritabilities were 0.01 for all 3 combined claw and leg health traits (on the observed binary scale), 0.09 for locomotion, 0.14 for rear leg rear view, 0.19 for rear leg side view, 0.13 for foot angle, 0.22 for apparent hock quality, and 0.27 for apparent bone structure. Heritabilities were 0.06 and 0.01 for claw health and leg health, respectively, when transformed to the underlying continuous scale. Claw and leg disorders are an increasing problem for Danish Holsteins, but genetic improvement of claw and leg health is challenging because the traits have low heritabilities. Claw and leg health were separate but correlated traits (r(g) = 0.35). Locomotion and rear leg rear view were useful indicator traits for claw health (r(g) = 0.46 and r(g) = 0.21, respectively), whereas hock quality and bone structure were useful indicators for leg health (r(g) = 0.42 and 0.26, respectively). Claw and leg health should be considered as separate traits in genetic evaluations that also include the useful indicator traits to compensate for low heritability of the health traits.
This study was aimed at identifying genomic regions controlling feeding behavior in Danish Duroc boars and its potential implications for eating behavior in humans. Data regarding individual daily feed intake (DFI), total daily time spent in feeder (TPD), number of daily visits to feeder (NVD), average duration of each visit (TPV), mean feed intake per visit (FPV) and mean feed intake rate (FR) were available for 1130 boars. All boars were genotyped using the Illumina Porcine SNP60 BeadChip. The association analyses were performed using the GenABEL package in the R program. Sixteen SNPs were found to have moderate genome-wide significance (p<5E-05) and 76 SNPs had suggestive (p<5E-04) association with feeding behavior traits. MSI2 gene on chromosome (SSC) 14 was very strongly associated with NVD. Thirty-six SNPs were located in genome regions where QTLs have previously been reported for behavior and/or feed intake traits in pigs. The regions: 64–65 Mb on SSC 1, 124–130 Mb on SSC 8, 63–68 Mb on SSC 11, 32–39 Mb and 59–60 Mb on SSC 12 harbored several signifcant SNPs. Synapse genes (GABRR2, PPP1R9B, SYT1, GABRR1, CADPS2, DLGAP2 and GOPC), dephosphorylation genes (PPM1E, DAPP1, PTPN18, PTPRZ1, PTPN4, MTMR4 and RNGTT) and positive regulation of peptide secretion genes (GHRH, NNAT and TCF7L2) were highly significantly associated with feeding behavior traits. This is the first GWAS to identify genetic variants and biological mechanisms for eating behavior in pigs and these results are important for genetic improvement of pig feed efficiency. We have also conducted pig-human comparative gene mapping to reveal key genomic regions and/or genes on the human genome that may influence eating behavior in human beings and consequently affect the development of obesity and metabolic syndrome. This is the first translational genomics study of its kind to report potential candidate genes for eating behavior in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.