OCT features in NMSC are identified, but AK and BCC cannot be differentiated. OCT diagnosis is less accurate than clinical diagnosis, but high accuracy in distinguishing lesions from normal skin, crucial for delineating tumor borders, was obtained.
Optical coherence tomography (OCT) is an emerging imaging technology based on light reflection. It provides real-time images with up to 2-mm penetration into the skin and a resolution of approximately 10 microm. It is routinely used in ophthalmology. The normal skin and its appendages have been studied, as have many diseases. The method can provide accurate measures of epidermal and nail changes in normal tissue. Skin cancer and other tumors, as well as inflammatory diseases, have been studied and good agreement found between OCT images and histopathological architecture. OCT also allows noninvasive monitoring of morphologic changes in skin diseases and may have a particular role in the monitoring of medical treatment of nonmelanoma skin cancer. The technology is however still evolving and continued technological development will necessitate an ongoing evaluation of its diagnostic accuracy. Several technical solutions are being pursued to further improve the quality of the images and the data provided, and OCT is being integrated in multimodal imaging devices that would potentially be able to provide a quantum leap to the imaging of skin in vivo.
Transduced deoxyribonucleoside kinases (dNK) can be used to kill recipient cells in combination with nucleoside prodrugs. The Drosophila melanogaster multisubstrate dNK (Dm-dNK) displays a superior turnover rate and has a great plasticity regarding its substrates. We used directed evolution to create Dm-dNK mutants with increased specificity for several nucleoside analogs (NAs) used as anticancer or antiviral drugs. Four mutants were characterized for the ability to sensitize Escherichia coli toward analogs and for their substrate specificity and kinetic parameters. The mutants had a reduced ability to phosphorylate pyrimidines, while the ability to phosphorylate purine analogs was relatively similar to the wild-type enzyme. We selected two mutants, for expression in the osteosarcoma 143B, the glioblastoma U-87M-G and the breast cancer MCF7 cell lines. The sensitivities of the transduced cell lines in the presence of the NAs fludarabine (F-AraA), cladribine (CdA), vidarabine and cytarabine were compared to the parental cell lines. The sensitivity of 143B cells was increased by 470-fold in the presence of CdA and of U-87M-G cells by 435-fold in the presence of F-AraA. We also show that a choice of the selection and screening system plays a crucial role when optimizing suicide genes by directed evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.