OBJECTIVEPeople with diabetes frequently develop vascular disease. We investigated the relationship between blood 25-hydroxyvitamin D (25OH-D) concentration and vascular disease risk in type 2 diabetes. RESEARCH DESIGN AND METHODSThe relationships between blood 25OH-D concentration at baseline and the incidence of macrovascular (including myocardial infarction and stroke) and microvascular (retinopathy, nephropathy, neuropathy, and amputation) disease were analyzed with Cox proportional hazards models and logistic regression in an observational study of patients in the 5-year Fenofibrate Intervention and Event Lowering in Diabetes trial. RESULTSA total of 50% of the patients had low vitamin D concentrations, as indicated by median blood 25OH-D concentration of 49 nmol/L. These patients with a blood 25OH-D concentration <50 nmol/L had a higher cumulative incidence of macrovascular and microvascular events than those with levels ‡50 nmol/L. Multivariate analysis, stratified by treatment and adjusted for relevant confounders, identified blood 25OH-D concentration as an independent predictor of macrovascular events. A 50 nmol/L difference in blood 25OH-D concentration was associated with a 23% (P = 0.007) change in risk of macrovascular complications during the study, and further adjustments for seasonality, hs-CRP, and physical activity level had little impact. The unadjusted risk of microvascular complications was 18% (P = 0.006) higher during the study, though the excess risk declined to 11-14% and lost significance with adjustment for HbA 1c , seasonality, or physical activity. CONCLUSIONSLow blood 25OH-D concentrations are associated with an increased risk of macrovascular and microvascular disease events in type 2 diabetes. However, a causal link remains to be demonstrated.Diabetes is among the leading causes of death and affects 347 million people worldwide. The World Health Organization expects a 50% increase in deaths from diabetes over the next 10 years, and by 2030, diabetes is projected to be the seventh leading cause of death (1). Most major complications involve large vessel (macrovascular) or small vessel (microvascular) disease.
We investigated the association between undercarboxylated osteocalcin (ucOC) and lower-limb muscle strength in women over the age of 70years. The study also aims to confirm the association between bone turnover markers and heel ultrasound measures. A post-hoc analysis using data collected as part of a randomized placebo-controlled trial of vitamin D supplementation. An immunoassay was used to quantify total OC (tOC), with hydroxyapatite pre-treatment for ucOC. We determined associations of absolute and relative (ucOC/tOC; ucOC%) measures of ucOC with lower-limb muscle strength, heel ultrasound measures of speed of sound (SOS) and broadband ultrasound attenuation (BUA), bone turnover markers (BTMs; P1NP and CTx) and the acute phase protein alpha-1-antichymotrypsin (α-ACT). ucOC%, but not absolute ucOC concentration, was positively associated with hip flexor, hip abductor and quadriceps muscle strength (all p<0.05). ucOC% was negatively associated with α-ACT (β-coefficient=-0.24, p=0.02). tOC was positively associated with both P1NP and CTx (p<0.001). For each per unit increase in tOC (μg/L) there was a corresponding lower BUA, SOS and SI (β-coefficient = -0.28; -0.23 and -0.23, respectively; all p<0.04). In conclusion, ucOC% is positively associated with muscle strength and negatively associated with α-ACT. These data support a role for ucOC in musculoskeletal interactions in humans. Whilst tOC is associated with bone health, ucOC% and ucOC may also be linked to falls and fracture risk by influencing muscle function.
Age-related bone loss is associated with changes in bone cellularity with characteristically low levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although recent in vitro evidence has suggested a new role for proteins of the nuclear envelope in osteoblastogenesis, the role of these proteins in bone cells differentiation and bone metabolism in vivo remains unknown. In this study, we used the lamin A/C null (Lmna −/−) mice to identify the role of lamin A/C in bone turnover and bone structure in vivo. At three weeks of age, histological and micro computed tomography measurements of femurs in Lmna −/− mice revealed a significant decrease in bone mass and microarchitecture in Lmna −/− mice as compared with their wild type littermates. Furthermore, quantification of cell numbers after normalization with bone surface revealed a significant reduction in osteoblast and osteocyte numbers in Lmna −/− mice compared with their WT littermates. In addition, Lmna −/− mice have significantly lower osteoclast number, which show aberrant changes in their shape and size. Finally, mechanistic analysis demonstrated that absence of lamin A/C is associated with increase expression of MAN-1 a protein of the nuclear envelope closely regulated by lamin A/C, which also colocalizes with Runx2 thus affecting its capacity as osteogenic transcription factor. In summary, these data clearly indicate that the presence of lamin A/C is necessary for normal bone turnover in vivo and that absence of lamin A/C induces low bone turnover osteopenia resembling the cellular changes of age-related bone loss.
ObjectiveChildren treated with stimulant medication for attention deficit hyperactivity disorder (ADHD) often lose weight. It is important to understand the implications of this during growth. This prospective study was designed to quantify the changes in body composition and markers of bone metabolism on starting treatment.Methods34 children (29 boys) aged 4.7 to 9.1 years newly diagnosed with ADHD were treated with dexamphetamine or methylphenidate, titrating the dose to optimise the therapeutic response. Medication was continued for as long as clinically indicated. Body composition and bone density (dual-energy X-ray absorptiometry) were measured at baseline, 6 months and 3 years; changes were analysed in Z-scores based on data from 241 healthy, local children. Markers of bone turnover were measured at baseline, 3 months and 3 years.ResultsFat loss of 1.4±0.96kg (total fat 5.7±3.6 to 4.3±3.1kg, p<0.001) occurred in the first 6 months. There were significant reductions over 3 years in the sex and height corrected Z-scores for lean tissue, bone mineral content, bone mineral density and ratio of central to total fat (−0.84±0.86, p=0.003; -0.55±0.31, p<0.0001; -0.41±0.28, p<0.0001 and −0.55±0.62, p=0.006 respectively). Propeptide of type I collagen indicated a significant reduction in bone turnover after 3 months (564±202 to 458±96ng/ml, p=0.019), which was fully recovered after 3 years (619±276ng/ml).ConclusionsStimulant medication was associated with early fat loss and reduced bone turnover. Lean tissue including bone increased more slowly over 3 years of continuous treatment than would be expected for growth in height. There was long-term improvement in the proportion of central fat for height. This study shows that relatively minor reductions in weight on stimulant medication can be associated with long-term changes in body composition. Further study is required to determine the effects of these changes on adult health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.