A number of neurodegenerative disorders, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are characterized by the intracellular deposition of fibrillar aggregates that contain a high proportion of ␣-synuclein (␣S). The interaction with the membrane-water interface strongly modulates folding and aggregation of the protein. The present study investigates the lipid binding and the coil-helix transition of ␣S, using titration calorimetry, differential scanning calorimetry, and circular dichroism spectroscopy. Titration of the protein with small unilamellar vesicles composed of zwitterionic phospholipids below the chain melting temperature of the lipids yielded exceptionally large exothermic heat values. The sigmoidal titration curves were evaluated in terms of a simple model that assumes saturable binding sites at the vesicle surface. The cumulative heat release and the ellipticity were linearly correlated as a result of simultaneous binding and helix folding. There was no heat release and folding of ␣S in the presence of large unilamellar vesicles, indicating that a small radius of curvature is necessary for the ␣S-membrane interaction. The heat release and the negative heat capacity of the proteinvesicle interaction could not be attributed to the coilhelix transition of the protein alone. We speculate that binding and helix folding of ␣S depends on the presence of defect structures in the membrane-water interface, which in turn results in lipid ordering in the highly curved vesicular membranes. This will be discussed with regard to a possible role of the protein for the stabilization of synaptic vesicle membranes. ␣-Synuclein (␣S)1 is a protein of 140 amino acids that has been identified as a major component of the intracytoplasmic fibrillar deposits (Lewy bodies) associated with idiopathic and inherited forms of Parkinson's disease (1). The majority of cases are idiopathic, whereas mutations in the ␣S gene are known to be responsible for rare inherited, early onset variants of Parkinson's disease (2-4). Although the molecular mode of action of ␣S and of its homologs is as yet unknown, it was assumed that the protein modulates the dopamine neurotransmission by regulating synaptic vesicle (SV) mobilization from the presynaptic reserve pool (5, 6) or directly regulating the dopamine metabolism (7-9). However, attempts to identify a specific SV-binding protein, e.g. by protein cross-linking, have been unsuccessful so far.At a certain threshold concentration, ␣S tends to aggregate into amyloid fibrils (10), whereas the homolog S, which lacks a stretch of amino acids within the central portion of ␣S, has a much lower fibrillization propensity (11, 12) and may even inhibit ␣S fibrillization (13-15), indicating that the hydrophobic central part of ␣S is essential for its fibrillar aggregation (16). A recent study on the structure of mature fibrillar aggregates, using site-directed spin labeling, indicates that the N terminus of ␣S is less ordered than the central portion and that t...
Vpu from HIV-1 is an 81 amino acid type I integral membrane protein which consists of a cytoplasmic and a transmembrane (TM) domain. The TM domain is known to alter membrane permeability for ions and substrates when inserted into artificial membranes. Peptides corresponding to the TM domain of Vpu (Vpu(1-32)) and mutant peptides (Vpu(1-32)-W23L, Vpu(1-32)-R31V, Vpu(1-32)-S24L) have been synthesized and reconstituted into artificial lipid bilayers. All peptides show channel activity with a main conductance level of around 20 pS. Vpu(1-32)-W23L has a considerable flickering pattern in the recordings and longer open times than Vpu(1-32). Whilst recordings for Vpu(1-32)-R31V are almost indistinguishable from those of the WT peptide, recordings for Vpu(1-32)-S24L do not exhibit any noticeable channel activity. Recordings of WT peptide and Vpu(1-32)-W23L indicate Michaelis-Menten behavior when the salt concentration is increased. Both peptide channels follow the Eisenman series I, indicative for a weak ion channel with almost pore like characteristics.
Selectively deuterated N-palmitoyl sphingomyelins were studied by deuterium nuclear magnetic resonance spectroscopy ((2)H-NMR) to elucidate the backbone conformation as well as the interaction of the sphingolipids with glycerophospholipids. Macroscopic alignment of the lipid bilayers provided good spectral resolution and permitted the convenient control of bilayer hydration. Selective deuteration at the acyl chain carbons C(2) and C(3) revealed that the N-acyl chain performs a bend, similar to the sn-2 chain of the phosphatidylcholines. Profiles of C-D bond order parameters were derived from the segmental quadrupolar splittings for sphingomyelin alone and for sphingomyelin-phosphatidycholine mixtures. In the liquid-crystalline state, the N-acyl chain of sphingomyelin alone revealed significantly more configurational order than the chains of homologous disaturated or monounsaturated phosphatidylcholines. The average chain order parameters and the relative width of the order parameter distribution were correlated over a range of bilayer compositions. The temperature dependence of the (2)H-NMR spectra revealed phase separation in bilayers composed of sphingomyelin and monounsaturated phosphatidylcholine, in broad agreement with existing phase diagrams.
Vpu, an integral membrane protein encoded in HIV-1, is implicated in the release of new virus particles from infected cells, presumably mediated by ion channel activity of homo-oligomeric Vpu bundles. Reconstitution of both full length Vpu(1-81) and a short, the transmembrane (TM) domain comprising peptide Vpu(1-32) into bilayers under a constant electric field results in an asymmetric orientation of those channels. For both cases, channel activity with similar kinetics is observed. Channels can open and remain open within a broad series of conductance states even if a small or no electric potential is applied. The mean open time for Vpu peptide channels is voltage-independent. The rate of channel opening shows a biphasic voltage activation, implicating that the gating is influenced by the interaction of the dipole moments of the TM helices with an electric field.
Interfacial properties of lipid bilayers were studied by (2)H nuclear magnetic resonance spectroscopy, with emphasis on a comparison between phosphatidylcholine and sphingomyelin. Spectral resolution and sensitivity was improved by macroscopic membrane alignment. The motionally averaged quadrupolar interaction of interlamellar deuterium oxide was employed to probe the interfacial polarity of the membranes. The D(2)O quadrupolar splittings indicated that the sphingomyelin lipid-water interface is less polar above the phase transition temperature T(m) than below T(m). The opposite behavior was found in phosphatidylcholine bilayers. Macroscopically aligned sphingomyelin bilayers also furnished (2)H-signals from the amide residue and from the hydroxyl group of the sphingosine moiety. The rate of water-hydroxyl deuteron exchange could be measured, whereas the exchange of the amide deuteron was too slow for the inversion-transfer technique employed, suggesting that the amide residue is involved in intermolecular hydrogen bonding. Order parameter profiles in mixtures of sphingomyelin and chain-perdeuterated phosphatidylcholine revealed an ordering effect as a result of the highly saturated chains of the sphingolipids. The temperature dependence of the (2)H quadrupolar splittings was indicative of lateral phase separation in the mixed systems. The results are discussed with regard to interfacial structure and lateral organization in sphingomyelin-containing biomembranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.