Hydrogen bond symmetrisations in H-bonded systems triggered by pressure-induced nuclear quantum effects (NQEs) is a long-known concept but experimental evidence in high-pressure ices has remained elusive with conventional methods. Theoretical works predicted quantum-mechanical tunneling of protons within water ices to occur at pressures above 30 GPa, and the H-bond symmetrisation transition to occur above 60 GPa. Here we used 1H-NMR on high-pressure ice up to 97 GPa, and demonstrate that NQEs govern the behavior of the hydrogen bonded protons in ice VII already at significantly lower pressures than previously expected. A pronounced tunneling mode was found to be present up to the highest pressures of 97 GPa, well into the stability field of ice X, where NQEs are not anticipated in a fully symmetrised H-bond network. We found two distinct transitions in the NMR shift data at about 20 GPa and 75 GPa attributed to the step-wise symmetrisation of the H-bond.
Knowledge of the behavior of hydrogen in metal hydrides is the key for understanding their electronic properties. So far, no experimental methods exist to access these properties at multimegabar pressures, at which high-Tc superconductivity emerges. Here, we present an 1 H-NMR study of cubic FeH up to 202 GPa. We observe a distinct deviation from the ideal metallic behavior between 64 and 110 GPa that suggests pressure-induced H-H interactions. Accompanying ab-initio calculations support this result, as they reveal the formation of an intercalating sublattice of electron density, which enhances the hydrogen contribution to the electronic density of states at the Fermi level. This study shows that pressure induced H-H interactions can occur in metal hydrides at much lower compression and larger H-H distances than previously thought and stimulates an alternative pathway in the search for novel high-temperature superconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.