Citizen science initiatives and the data they produce are increasingly common in ecology, conservation and biodiversity monitoring. Although the quality of citizen science data has historically been questioned, biases can be detected and corrected for, allowing these data to become comparable in quality to professionally collected data. Consequently, citizen science is increasingly being integrated with professional science, allowing the collection of data at unprecedented spatial and temporal scales. iNaturalist is one of the most popular biodiversity citizen science platforms globally, with more than 1.4 million users having contributed over 54 million observations. Australia is the top contributing nation in the southern hemisphere, and in the top four contributing nations globally, with over 1.6 million observations of over 36000 identified species contributed by almost 27000 users. Despite the platform’s success, there are few holistic syntheses of contributions to iNaturalist, especially for Australia. Here, we outline the history of iNaturalist from an Australian perspective, and summarise, taxonomically, temporally and spatially, Australian biodiversity data contributed to the platform. We conclude by discussing important future directions to maximise the usefulness of these data for ecological research, conservation and policy.
Citizen science is fundamentally shifting the future of biodiversity research. But although citizen science observations are contributing an increasingly large proportion of biodiversity data, they only feature in a relatively small percentage of research papers on biodiversity. We provide our perspective on three frontiers of citizen science research, areas that we feel to date have had minimal scientific exploration but that we believe deserve greater attention as they present substantial opportunities for the future of biodiversity research: sampling the undersampled, capitalizing on citizen science's unique ability to sample poorly sampled taxa and regions of the world, reducing taxonomic and spatial biases in global biodiversity data sets; estimating abundance and density in space and time, develop techniques to derive taxon-specific densities from presence or absence and presence-only data; and capitalizing on secondary data collection, moving beyond data on the occurrence of single species and gain further understanding of ecological interactions among species or habitats. The contribution of citizen science to understanding the important biodiversity questions of our time should be more fully realized.
NOTE: This is a pre-print, still under consideration for publication, and this version has not undergone peer review.
Pelagic biofoulers such as barnacles or bryozoans settle and raft on natural debris like pumice or seeds. Recent influxes of marine debris into the world's oceans, especially plastic, have increased habitat availability for these biofoulers. Goose barnacles in the genus Lepas are some of the most common biofouling taxa globally, and play an important role in biofouling communities as foundation species. We examined community succession, growth rates and isotopic composition in Lepas and their associated biofouling communities in coastal waters of eastern Australia. Community succession on a fixed surface mooring showed an increase in species diversity over 25 weeks. Using the abundances of L. anserifera, L. anatifera, and the amphipods Caprella danilevskii and Jassa slatteryi, we created an equation to estimate minimum duration at sea. Predators such as the polychaete Amphinome rostrata may influence the biofouling community, as can beach scavengers once floating debris is cast ashore. We report a new maximum growth rate for L. anserifera of 1.45 mm −1 , and our study is the first to report growth rates for any species of Lepas faster than 1 mm day −1 . Lepas were larger on moored floats than on smaller, free-floating drifters. δ 18 O content of Lepas shells was a robust predictor of sea surface temperatures during formation for L. anatifera and L. anserifera. Our findings have important applications for estimating drift duration and trajectories of marine debris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.