Seawater treatment is increasingly required due to industrial activities that use substantial volumes of seawater in their processes. The shipping industry and the associated management of a ship's ballast water are currently considered a global challenge for the seas. Related to that, the suitability of an Electrochemical Advanced Oxidation Process (EAOP) with Boron Doped Diamond (BDD) electrodes has been assessed on a laboratory scale for the disinfection of seawater. This technology can produce both reactive oxygen species and chlorine species (especially in seawater) that are responsible for inactivation. The EAOP was applied in a continuous-flow regime with real seawater. Natural marine heterotrophic bacteria (MHB) were used as an indicator of disinfection efficiency. A biphasic inactivation kinetic model was fitted on experimental points, achieving 4-Log reductions at 0.019 Ah L. By assessing regrowth after treatment, results suggest that higher bacterial damages result from the EAOP when it is compared to chlorination. Furthermore, several issues lacking fundamental understanding were investigated such as recolonization capacity or bacterial community dynamics. It was concluded that, despite disinfection processes being effective, there is not only a possibility for regrowth after treatment but also a change on bacterial population diversity produced by the treatment. Finally, energy consumption was estimated and indicated that 0.264 kWh·m are needed for 4.8-Log reductions of MHB; otherwise, with 0.035 kWh·m, less disinfection efficiency can be obtained (2.2-Log red). However, with a residual oxidant in the solution, total inactivation can be achieved in three days.
Core Ideas• There are three distinct fractions of natural nanoparticles and colloids. • These unique fractions have different preferential P binding. • The fractions include Fe-P, organic C-P, and clay-P. • Field flow fractionation coupled online to OC detector for size resolved OC detection.
The increase of Natural Organic Matter (NOM) in natural water sources, partly caused by progressing climate change issues, is a growing concern for drinking water production.In recent years, membrane technology like Reverse Osmosis (RO) or Nanofiltration (NF) has been successfully applied as a robust solution for NOM removal to produce potable water. However, coagulation/flocculation pre-treatment, combined with Microfiltration (MF) ceramic membrane filtration is nowadays seen as an alternative, less-energy-consuming membrane process for NOM removal. In this study different coagulants have been used under varying coagulation/flocculation conditions to investigate the respective impact on membrane filtration performance.Three alternative coagulation/flocculation configurations were compared. It is shown that NOM was efficiently removed independently on the chosen configuration or coagulant type. Similar and low membrane fouling rates were observed for all tests. Residual metal concentration was found to be the limiting permeate quality parameter, which limits the options of operating conditions. Furthermore, the compact inline pipe flocculator configuration has the potential of designing more compact full-scale units, using less space compared to conventional sand filtration units or even membrane filtration plants using classical tank coagulation/flocculation configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.