Item response theory (IRT) and related latent variable models represent modern psychometric theory, the successor to classical test theory in psychological assessment. Although IRT has become prevalent in the measurement of ability and achievement, its contributions to clinical domains have been less extensive. Applications of IRT to clinical assessment are reviewed to appraise its current and potential value. Benefits of IRT include comprehensive analyses and reduction of measurement error, creation of computer adaptive tests, meaningful scaling of latent variables, objective calibration and equating, evaluation of test and item bias, greater accuracy in the assessment of change due to therapeutic intervention, and evaluation of model and person fit. The theory may soon reinvent the manner in which tests are selected, developed, and scored. Although challenges remain to the widespread implementation of IRT, its application to clinical assessment holds great promise. Recommendations for research, test development, and clinical practice are provided.
The spontaneous emission of a single molecule is substantially modified close to a metallic nanostructure. We study the spectral behavior of the radiative and nonradiative decay rates and of the local-field factor in the vicinity of a plasmon resonance. We show that the highest fluorescence enhancement is obtained for an emission wavelength redshifted from the plasmon resonance, and that quenching always dominates at plasmon resonance. These results may have experimental implications in spectroscopy and monitoring of elementary light sources.
Importance Neurophysiological measures of early auditory information processing (EAP) are used as endophenotypes in genomic studies and biomarkers in clinical intervention studies. Research in schizophrenia has established correlations among measures of EAP, cognition, clinical symptoms, and functional outcome. Clarifying these relationships by determining the pathways through which deficits in EAP affect functioning would suggest when and where to therapeutically intervene. Objective We sought to characterize the pathways from EAP to outcome and to estimate the extent to which enhancement of basic information processing might improve both cognition and psychosocial functioning in schizophrenia. Design Cross-sectional data were analyzed using structural equation modeling to examine the associations between EAP, cognition, negative symptoms, and functional outcome. Setting Participants were recruited from the community at five geographically distributed laboratories as part of the Consortium on the Genetics of Schizophrenia-2 (COGS-2). Participants This well-characterized cohort of schizophrenia patients (N = 1,415) underwent EAP and cognitive testing as well as thorough clinical and functional assessment. Main Outcome and Measures EAP was measured by mismatch negativity, P3a, and reorienting negativity. Cognition was measured by the Letter Number Span test and scales from the California Verbal Learning Test - Second Edition, the Wechsler Memory Scale Third Edition, and the Penn Computerized Neurocognitive Battery. Negative symptoms were measured by the Scale for the Assessment of Negative Symptoms. Functional outcome was measured by the Role Functioning Scale. Results EAP had a direct effect on cognition (β = 0.37, p < .001), cognition had a direct effect on negative symptoms (β = −0.16, p < .001), and both cognition (β = 0.26, p < .001) and experiential negative symptoms (β = −0.75, p < .001) had direct effects on functional outcome. Overall, EAP had a fully mediated effect on functional outcome, engaging general rather than modality-specific cognition, with separate pathways that either involved or bypassed negative symptoms. Conclusions and Relevance The data support a model where EAP deficits lead to poor functional outcome via impaired cognition and increased negative symptoms. Results can be used to help guide mechanistically informed, personalized treatments, and support the strategy of using EAP measures as surrogate endpoints in early stage pro-cognitive intervention studies.
Mismatch negativity (MMN) and P3a are auditory event-related potential (ERP) components that show robust deficits in schizophrenia (SZ) patients and exhibit qualities of endophenotypes, including substantial heritability, test-retest reliability, and trait-like stability. These measures also fulfill criteria for use as cognition and function-linked biomarkers in outcome studies, but have not yet been validated for use in large-scale multi-site clinical studies. This study tested the feasibility of adding MMN and P3a to the ongoing Consortium on the Genetics of Schizophrenia (COGS) study. The extent to which demographic, clinical, cognitive, and functional characteristics contribute to variability in MMN and P3a amplitudes was also examined. Participants (HCS n=824, SZ n=966) underwent testing at 5 geographically distributed COGS laboratories. Valid ERP data was obtained from 91% of HCS and 91% of SZ patients. Highly significant MMN (d=0.96) and P3a (d=0.93) amplitude reductions were observed in SZ patients, comparable in magnitude to those observed in single-lab studies with no appreciable differences across laboratories. Demographic characteristics accounted for 26% and 18% of the variance in MMN and P3a amplitudes, respectively. Significant relationships were observed among demographically-adjusted MMN and P3a measures and medication status as well as several clinical, cognitive, and functional characteristics of the SZ patients. This study demonstrates that MMN and P3a ERP biomarkers can be feasibly used in multi-site clinical studies. As with many clinical tests of brain function, demographic factors contribute to MMN and P3a amplitudes and should be carefully considered in future biomarker-informed clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.